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Editorial Note 

Editor-in-Chief: Paresh Kumar Narayan, Alfred Deakin Professor, Deakin University 

Series Editor: Seema Narayan, Associate Professor, RMIT University 

Asia-Pacific Applied Economics Association (APAEA) conference proceedings publishes high 

quality papers selected out of papers presented at APAEA’s conferences. Each APAEA 

conference is affiliated with either SCOPUS indexed or social science citation indexed 

journals. The APAEA conferences encourage presentation of papers broadly in the fields of 

economics and finance that make use of advanced econometric techniques and new datasets to 

test economic models and hypotheses related to finance and economics. Common topics of 

importance to conference participants are those that test economic models and hypothesis using 

new datasets and/or methods, forecasting financial time-series data, financial market 

performance, macroeconomic stability issues, panel data models, energy finance, economic 

growth and productivity, and econometrics methods including financial econometrics. These 

are the types of papers that are ultimately published in the APAEA conference proceedings.  

The APAEA conference proceedings follow a single blind review procedure. All papers 

submitted to the conference go through a single blind review procedure such that those papers 

that are ultimately published in the Proceedings have undergone a review process. The 

conference and, therefore, the Proceedings rejection rate stands at 50%. The low quality papers, 

which in the view of the conference scientific committee and the Editor of the Proceedings 

have low chances of advancing knowledge and contributing to the literature are desk rejected 

without sending the papers for a formal review. 

All APAEA publications, including the Proceedings, follow the publication ethics and 

malpractice statements developed for editors and authors by Wagner & Kleinert (2011). See 

https://publicationethics.org/node/11184 for details and full bibliographical information on 

Wagner & Kleinert (2011).  
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Managing COP21 using a Stock and Oil Market Integration Index 
 

Jonathan A. Batten, Department of Banking and Finance, Monash University, Australia. 

 

Harald Kinateder, Department of Business and Economics, University of Passau, Germany. 

 

Peter G. Szilagyi, Central European University, Nador utca 9, 1051 Budapest, Hungary. 

 

Niklas F. Wagner, Department of Business and Economics, University of Passau, Germany. 

 

 

Abstract 

COP21 implementation should lead to a decline in the future demand for fossil fuels. We 

construct a monthly integration index and then demonstrate that oil investors can offset adverse 

oil price risk by holding various global stock portfolios during the November 1994 to May 2017 

period. The portfolios are formed from eight different combinations of developed and emerging 

stock markets. We show that measuring the degree of stock-oil market integration for these 

portfolios is critical to managing the time-varying degrees of integration that exist between oil 

and stock markets. Importantly, under normal market conditions, when markets are segmented, 

there is the opportunity for oil investors to diversify the additional energy price risk, caused by 

COP21, through the purchase of stocks. Even over the full sample period, we document risk 

adjusted positive benefits to investors from holding diversified oil-stock portfolios for the 

global stock market regions, except for the Far East. 

 

 

Keywords: Commodities, COP21, Financial Market Integration, International Asset Pricing, 

Market Risk, WTI Oil, Risk of Climate Change, Systematic Risk. 
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1. Introduction 

One key impact arising from COP211 is the expected ongoing decline in the future demand for 

fossil fuels such as coal, oil and gas. These outcomes also link with broader public policy 

concerns over the impacts of climate change, which The Institute for Sustainability Leadership 

(2015) stresses is basically unhedgeable. In this context, Jefferson (2015) highlights that the 

world in the 21st century faces tremendous energy challenges that mainly arise from the demand 

side due to increasing population growth. Thus, there is a strong need for a sustainable global 

energy policy. 

 

In this paper, we construct a stock-oil integration index to show how oil investors can in fact 

diversify and then offset, or hedge, the demand related oil price risks that will arise from 

COP21. Central to these risk management strategies is the measurement of the statistical 

relationship between oil and financial assets. We show that investors that consider these 

relationships receive positive economic benefits since they can outperform naïve trading 

strategies. These findings add to an existing debate on the importance of better understanding 

the two-way impact of oil and stock market prices on one another, since they are also vital for 

regulatory and macroeconomic policy, both at a country and global level (Bernanke, 2016). 

 

Financial assets may be combined with energy assets into portfolios along with developed and 

emerging country stock markets. Recent empirical studies on these portfolios have highlighted 

their time-varying correlation relationships, often with risk spill-overs between specific stock 

and energy markets. The focus of many of these studies tends to be on the impact of energy 

prices on developed country stock markets, which have historically been oil importers and those 

emerging markets, which tend to be oil exporters, such as those in the MENA region2 (e.g. 

Mensi et al. 2013; Demirer et al. 2015; Tsai, 2015; Kyrtsou et al. 2016; Balcilar et al. 2017). 

However, rather than investigate the stock markets of specific countries, we investigate impacts 

on region wide and global portfolios. 

 

In constructing the oil-stock integration index, this study builds upon existing portfolio theory 

applied to international financial markets (e.g. Solnik, 1977; Stulz, 1981). Importantly, theory 

shows that by holding uncorrelated assets in an international portfolio, from markets that may 

be isolated by geography, regulation or function, the risk of one stock market can be used to 

offset the risk of the other. Combining portfolios across industries and other markets with 

varying degrees of liquidity and market access, allows an investor to eventually form diversified 

portfolios that minimise risk and transactions costs, while maximising expected return.  

 

Globalisation, the removal of capital controls and financial market regulatory convergence over 

the past two to three decades has tended to remove those barriers that once prevented investors 

undertaking various cross-border transactions. These changes have effectively expanded the 

range of possible investment opportunities available to investors beyond simply domestic ones. 

Consequently, in the spirit of many of these international studies, where the focus is on the 

inclusion of emerging stock markets, such as Bekaert and Harvey (1995, 1997, 2000), Gerard 

                                                           
1 COP21 refers to the agreement from the 2015 United Nations Climate Change Conference in Paris. The key 

result was an agreement to set a goal of limiting global warming to less than 2 degrees Celsius (°C) compared to 

pre-industrial levels. The agreement calls for zero net anthropogenic greenhouse gas emissions to be reached 

during the second half of the 21st century.  
2 The Middle East and North Africa (MENA) countries include: Algeria, Bahrain, Djibouti, Egypt, Iran, Iraq, 

Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunisia, United Arab 

Emirates, West Bank and Gaza, and Yemen. Ethiopia and Sudan are sometimes included. 
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et al. (2003), Chi et al. (2006) and Jeon et al. (2006), we include emerging markets as well as 

various combinations of developed markets in our portfolio analysis. 

Because of these changes, financial markets have become both more efficient and integrated. 

Integration measures the degree that price changes in one market affect all markets. An 

extensive recent literature (see for example, Sadorksy (2014), Khalfaoui et al. (2015), Mensi et 

al. (2015), Kyrtsou et al. (2016), Batten, Kinateder, Szilagyi and Wagner (2017, henceforth 

simply BKSW, 2017)) in fact shows that these relationships vary over time as local market, or 

idiosyncratic factors (such as a change in government), that may limit system-wide impacts, are 

overridden by global factors. As the recent Global Financial Crisis (GFC) of 2007-2008 has 

shown, some shocks affect all markets, irrespective of location, although the impacts measured 

in terms of scale and scope may differ3. 

 

We contribute to the far-ranging debate on the impacts of COP21 by showing how the impact 

of declining energy demand influences financial assets. Since these impacts can be measured, 

they can also subsequently be hedged, using existing derivative financial products, such as 

options and futures amongst others. Our approach follows an existing asset-pricing literature 

that determines the degree of integration between energy and key stock markets, measured as 

portfolios and then to use these statistical relationships to form stock-energy market portfolios 

under different conditions of integration and segmentation. Segmentation refers to the opposite 

state to integration, when the price effects in one asset market have no effect on the other. 

 

But exactly how can investors do this? We begin by providing a clear understanding of the 

dynamic relationship between a key energy asset, West Texas Intermediate (WTI) and stock 

portfolios from various stock markets4. We show that under normal market conditions, when 

markets are segmented, there is the opportunity for oil investors to diversify the additional oil 

price risk, caused by COP21, through the purchase of stocks. From an energy policy 

perspective, it is worth noting that the reliance on imported oil by many countries as a key 

source of energy, can be very costly, not only just due to climate change induced reasons. For 

example, Brown and Huntington (2015) analyze the broad macroeconomic costs that arise from 

the U.S. reliance on imported oil5.  

 

Next, the temporal nature of these relationships is considered. Previous research by BKSW 

(2017), has already identified dynamic and time-varying integration between different stock 

markets, and stock and energy markets. When energy and stock markets are highly integrated 

there are few diversification benefits to investors. Importantly, during periods of financial 

market crisis, there is no benefit to investors as markets are highly integrated. Thus, investors 

need to move beyond simple purchases of stocks and energy assets, to a more active 

management of their portfolios. We show the cost-saving benefits of a naïve buy-and-hold 

strategy are easily out-performed by more active portfolio management, which considers the 

degree of integration between oil and stock markets.   

 

The paper is set out as follows: next in the method section we discuss more fully the literature 

on financial market integration and how it can be incorporated into the COP21 framework. For 

brevity, this discussion is not exhaustive and key papers with a detailed literature are mentioned. 

                                                           
3 For example, Batten et al. (2017) and Mensi et al. (2017) and the references mentioned therein, amongst others. 
4 This paper does not consider other non-financial assets (e.g. such as housing), but these could also be considered. 

We thank a conference participant at the 2017 International Symposium on Environment and Energy Finance 

Issues, IPAG Business School, France for making this point.  
5 Note that while the U.S. is now a net exporter of oil it will likely remain an importer of mostly crude oil and 

export mostly petroleum products such as gasoline and diesel (EIA, 2017). 
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Then, in the third section, we introduce and describe the stock and oil market data used in the 

statistical analysis. The fourth section reports the key results from measuring the degree of 

integration between oil and various stock market portfolios. The use of a rolling estimation 

procedure allows the construction of a monthly oil-stock integration index that is reported in 

annual tables for the various portfolios6. The final section allows for concluding remarks. 

 

2. Method 

Typically, in econometric studies, investigation of the degree of integration between two 

financial assets, employs the cointegration framework of Johansen (1991) and Escribano and 

Granger (1998). This framework has practical limitations. For example, Arouri and Foulquier 

(2012) question its use due to instability in time series due to economic crisis. Pukthuanthong 

and Roll (2015) also show that alternatives, such as simple correlations, are a poor measure of 

market integration. In this paper, we follow the earlier work of BKSW (2017) and use an 

international asset pricing model that better reflects the time-varying nature of energy stock 

market integration. The use of a portfolio framework allows measurement of the degree of risk 

reduction through diversification and importantly allows for assessment of the temporal nature 

of the integration dynamics. The use of this method underpins our approach for the construction 

of an integration index that can be practically used by investors to deal with the implementation 

of COP21.  

Originally, Solnik (1977) and Stulz (1981) proposed that in a fully integrated international 

financial market, in which purchasing power parity holds, the conditional international version 

of the ICAPM can be expressed as  

 

E(Rit| ℱ t-1) – Rft  =  m,t-1 cov(Rit, Rmt| ℱ t-1),     (1)  

 

where Rit is the return on asset i, Rft is the risk-free rate, Rm,t is the return on the world market 

portfolio, ℱ t-1 is the information set available at time t-1 and m,t-1 is the price of world market 

risk. Energy prices tend to be highly correlated and so for simplicity we consider market risk as 

being represented by the oil price, which is represented in Equation (1) as m. From a practical 

point of view oil trades in international markets and has a common, international and 

arbitrageable price, which by convention is in U.S. dollars per barrel of oil. If our stock market 

portfolios i, are fully integrated with this oil market portfolio, then local market idiosyncratic 

risk is fully diversifiable and its associated price is zero.7 We assume a single world price for 

oil risk, and so can determine the degree of market integration of each asset i, which is 

represented by various stock market indices. To estimate the level of overall stock market 

integration with an individual energy commodity (oil), we set up the regression equation 

E(Rit – Rft) = φ [βiE(Rmt – Rft)] +  γi + εit,                (2)  

 

where Rit, Rft, and Rmt are the monthly returns on the risky asset i, the risk-free asset and the oil 

portfolio, respectively; i represents the stock market portfolio investigated and t represents time, 

which is measured at an interval of one month; εit is the error-term; φ is the regression coefficient 

of [βiE(Rmt – Rft)] and γi are country-region specific effects. The risk free asset is the monthly 

return from holding a 1-year U.S. Treasury Bond, for one month, which is the return interval of 

Rit. We use the one year rate since over the sample period of our study some shorter term 

                                                           
6 We suggest that monthly level tables will be made available on an external website. 
7 See Chi et al. (2006), Jeon et al. (2006), Arouri and Foulquier (2012), Arouri et al. (2012) among many others. 

As noted by Gerard et al. (2003), the price of market risk is the expected compensation that an investor would 

receive for taking on a unit of world covariance risk. However, given the likely situation of partial segmentation, 

then expected returns are a function of both global market risk and non-diversifiable local market risk. 
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Treasury securities had negative yields.  

  

We follow BKSW (2017) and Model (2), as a two-step estimation methodology. First, we 

calculate βi as an estimate of cov(Rit,Rmt)/var(Rmt), where the covariance/variance estimation 

period is the prior 24 months of returns of Ri and Rm. This approach is consistent with the asset 

pricing literature and allows an investor to hold a portfolio for two years (i.e. a long-term 

investor not a speculator, who might only hold a position for a short time period, such as one 

week). For example, Park and Lee (2011) use a rolling window of eighteen months of stock 

returns to capture time variation in the covariance structure of a portfolio. Second, based on an 

a priori computed βi, we estimate the parameters of Model (2) by ordinary least squares for 

both the complete sample and for a five-year rolling period (i.e. 60-months).  

 

In Model (2), the coefficient φ measures the level of energy market integration, where φ = 0 

indicates no and φ = 1 full energy market integration. The parameter γi accounts for country-

region specific effects, as in Chi et al. (2006). Note, if the markets investigated are efficient and 

highly integrated then γi should not be significantly different from zero and φ should be close 

to one. Autocorrelation is often a common feature of financial market returns and may be 

present in the excess stock returns of our sample. Due to the presence of autocorrelation in the 

excess returns (Rit – Rft) of some of the portfolio assets under investigation, an appropriate 

autoregressive term was also applied as a robustness check to the regression results. 

 

As in Batten et al. (2015, 2017), we use a restricted version of Equation (2) to establish the 

presence of a risk adjusted excess return for asset i. For this purpose, we restrict φ = 1. In the 

restricted case, Equation (2) becomes: 

 

                                    E(Rit – Rft) – βi  E(Rmt – Rft) = γi + εit                 (3) 

 

The variable γi should equal zero if there is no excess return on a risk adjusted basis (i.e. there 

is no country-specific pricing error). Note, we do not impose a non-negativity constraint on the 

integration coefficient (as in Bekaert and Harvey (1995)), although we are mindful of the 

assumption that investor risk aversion must be positive. 

 

3. Data 

We measure oil prices in U.S. dollars from January 1990 to May 2017. There are three main 

types of oil actively traded in financial markets: Brent, West Texas Intermediate, and the Dubai 

Fateh. All are measured and traded in U.S. Dollars per Barrel. Monthly prices are sourced from 

the World Bank. These contracts are highly correlated (BKSW, 2017) and West Texas 

Intermediate is the most liquid of these contracts with 276.8 million contracts traded in 2016 on 

the New York Mercantile Exchange, compared with the Brent contract with 210.6 million 

trading on the ICE Futures Exchange8.   

 

The stock portfolios comprise the following: 

- MSCI Emerging Markets 

- MSCI MXWO (Developed Markets) 

- MSCI ACWI (Emerging and Developed Markets) 

- MSCI Europe 

- MSCI G7 Countries (Canada, France, Germany, Italy, Japan, the United Kingdom and the 

United States) 

                                                           
8 Source: Futures Industry Association survey data: https://fia.org/ 
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- MSCI Far East (Japan, Hong Kong and Singapore) 

- MSCI North America (Canada and the United States) 

- S&P 500 (United States only index) 

 

According to the classification by Standard and Poor's (S&P), there are 22 developed countries 

(Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Hong Kong, 

Ireland, Israel, Italy, Japan, Luxembourg, Netherlands, New Zealand, Norway, Singapore, 

South Korea, Spain, Sweden, Switzerland, the U.K., and the U.S.), and 30 emerging countries 

(Argentina, Brazil, Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, India, 

Indonesia, Malaysia, Mexico, Morocco, Pakistan, Peru, Philippines, Poland, Romania, Russian 

Federation, Slovenia, South Africa, Sri Lanka, Taiwan, Thailand, Turkey, Venezuela). 

 

The MSCI Europe Index represents the performance of large and mid-cap equities across 15 

developed countries in Europe (Austria, Belgium, Denmark, Finland, France, Germany, Ireland, 

Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the U.K.). The Index 

has a number of sub-Indexes which cover various sub-regions market segments/sizes, sectors 

and covers approximately 85% of the free float-adjusted market capitalization in each country9. 

The MSCI Far East Index captures large and mid-cap representation across three countries 

(Japan, Singapore and Hong Kong) and has 392 constituents. The index covers approximately 

85% of the free float-adjusted market capitalization in each country. Finally, the monthly return 

on the 1-Year Treasury Constant Maturity Rate (percent and not seasonally adjusted) is sourced 

from the Board of Governors of the Federal Reserve System (U.S.) from the H.15 Selected 

Interest Rates and is used as the risk-free rate when calculating risk adjusted returns10. 

 

(Insert Table 1 about here) 

 

Key descriptive statistics are reported in Table 1. The statistics are for the full sample period 

from January 1990 to May 2017. We report statistics for monthly closing prices, Pit, and 

corresponding returns are measured as the difference in the natural logarithm of intermonth 

prices (Rit = lnPit – lnPit-1). All risky asset returns (stock markets and oil) display negative 

skewness, which is a common finding especially for stock markets. In addition, we detect a 

positive excess kurtosis in all markets, whereas the highest (lowest) value is observed for the 

MSCI Emerging Markets (3.42) and MSCI Far East (1.16), respectively. Oil returns show 

higher volatility than stock markets. Nevertheless, oil returns have a positive mean in contrast 

to the MSCI Far East. Among stock markets the highest (lowest) volatility is documented for 

the MSCI Emerging Markets (0.0292) and S&P 500 (0.0181), respectively. 

 

(Insert Table 2 about here) 

 

It is also well known that many financial time series display autoregressive properties due to 

the presence of serial correlation in their return structure. Table 2 reports the results from the 

application of a first order autoregressive filter to the eight portfolio return series (column one). 

The coefficient reported in the second column is positive in all cases, but only significant, as 

noted by the t-statistic and its associated p-value, for the first three portfolios. This suggests 

that an additional robustness test should be undertaken for the estimation of the integration 

index that uses first order filtered returns in addition to the monthly returns. These results are 

reported later in the paper. 

                                                           
9 Source: https://www.msci.com/market-cap-weighted-indexes 
10 http://www.federalreserve.gov/ 
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(Insert Table 3 about here) 

 

In addition to serial correlation, Pearson pairwise correlations for all the variables are reported 

to highlight the difficulty that many investors face when constructing diversified international 

stock portfolios. First, all pairwise stock portfolio correlations are positive and significant, with 

the highest correlations between developed country stock market portfolios (e.g. the correlation 

between the MXWO and the G7 countries is 0.9970), while the lowest correlations were 

between the Far East and the North American and S&P 500 indices (e.g. the correlation between 

the Far East and the S&P 500 was 0.5180). The stock portfolios to oil correlations were low but 

still positive for oil measured both as Brent and WTI, although the correlation between oil and 

the S&P 500 indices was -full sample- not significant for both WTI and Brent oil, and not 

significant for the North American and WTI oil. Brent and WTI are both highly positively 

correlated, which suggests they are effectively price substitutes (except for the North American 

portfolio case), while U.S. 1-year bond holding periods returns are negatively correlated to stock 

returns. This last finding is consistent with stocks and bond returns being portfolio substitutes 

(e.g. investors substitute stocks for bonds in their portfolios when bond yields rise and the 

reverse when bond yields fall). 

 

(Insert Table 4 about here) 

 

4. Results 

 

Oil-Stock Portfolio Integration Index 

The estimation of the integration index between various stock portfolios and the WTI oil price, 

was estimated from Equation (2) using monthly data. Table 4 reports the results of the full 

sample Ordinary Least Squares regression, while Tables 5 and 6 report the results from a 60-

month (5-year) rolling estimation, with annual averages and standard deviations estimated using 

an Analysis of Variance (ANOVA) in Table 5 and tests for equal variance in Table 6. 

 

Table 4 also reports three time variables to represent the period from January 1990 to the onset 

of the Asian Crisis in July 1997; August 1997 to October 2001, which includes the impact of 

September 11, 2001; November 2001 until September 2008, when Lehman defaulted on 

September 15, 2008. In each of the regressions the constant was not signficant.  The integration 

coefficients were all significant and positive for all portfolios, with values ranging from 0.5490 

for the Far East portfolio to 0.6632 for the North America (NA) portfolio. The Adjusted R2 were 

all less than 10%.  

 

The time variables were generally not signficant, with the exception of time period 2 for the 

Emerging Markets (EM) and Far East portfolios, where they were both negative and significant. 

In both cases the negative coefficients, would have reduced the level of integration, thereby 

offering investors the opportunity to hedge some of their stock market declines (due to the crisis 

periods) by holding oil assets. In addition to the time variables, the regressions for the EM, 

MXWO and ACWI portfolios were also restimated with AR(1) filtered returns to accomodate 

the autoregressive properties dsecribed in Table 2. In all three cases the integration coefficent 

was slightly reduced by including the AR(1) terms, although they all reamined significant. 

(Insert Tables 5 and 6 about here) 

 

Tables 5 and 6 report the annual average and standard deviation of the integration index between 

various stock portfolios and the WTI oil price, estimated from Equation (3) using monthly data. 
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There is only one year (2007) where we detect a negative index value for all markets. The reason 

is that the beginning of the GFC from August 2007 influenced all global stock markets, although 

oil market prices remained resilient against the negative stock market trend until July 2008. The 

markets with the highest (lowest) number of negative index values are Europe (11) and Far East 

(5), respectively. A possible reason why stock markets in the Far East show a positive 

integration coefficient is their economies are important locations for crude oil processing. 

Another interesting finding for the Far East it that during the GFC (year 2007 and 2008) the 

integration coefficient has the lowest standard deviation among all markets.  

 

Asset Allocation Strategy 

Finally, we determine if the information provided by the integration index φt can be used as part 

of an asset allocation strategy, where the investor reallocates their portfolio every month t. The 

final Table 7 reports the results for two different scenarios: Panel A consists of results for a 

passive strategy with 100% investment in a single market without considering the integration 

between stock markets and WTI oil. In contrast, Panel B represents the situation where xt% is 

invested in a stock market and (1-xt)% in WTI oil. The time-varying weight xt is determined by 

the level of WTI-stock market integration, whereas the weight xt is restricted to 0 ≤ φt ≤ 1. The 

portfolio weights are updated monthly using the monthly integration index φt. The sample 

period is from November 1994 to May 2017 (271 months) and all results are based on excess 

returns estimated from Equation (3). 

 

(Insert Table 7 about here) 

 

We find that without considering information from the integration index all portfolios – except 

for the MSCI Far East – have a positive mean. Based on the Sharpe ratio (SR) we detect the 

best performance for the S&P 500 (SR = 0.0982) and the weakest one for the MSCI Far East 

(SR =   -0.0009). The consideration of WTI-stock market integration offers some important 

benefits for investors. We detect for all markets an increase of the SR, where the greatest benefit 

is for the MSCI G7 countries (SR = 0.0427) and the lowest one is for the S&P 500 (SR = 

0.0009). Furthermore, Panel B shows that the best asset allocation strategy is MSCI North 

America in combination with WTI (SR = 0.1084). However, there is no change for the weakest 

portfolio. The MSCI Far East combined with WTI yields now a positive but very low SR of 

0.0065. 

 

5. Conclusion 

 

The paper shows that under normal market conditions stock and oil markets are segmented. 

This provides an opportunity for oil investors to diversify the additional energy price risk, 

caused by COP21, through the purchase of stocks. Generally, in the full sample, investors 

receive positive risk adjusted positive benefits from holding oil-stock portfolios. The exception 

is the Far East stock portfolio that comprises the Japanese, Hong Kong and Singapore stock 

markets, with the latter two countries being major financial centres, although they are also 

important locations for crude oil processing. 

 

In conclusion, the use of the integration relation between oil and stock markets allows the 

hedging of energy price risk. Nonetheless, there is an important caveat, due to the unpredictable 

nature of the impacts that can arise from both demand and supply shocks. The recent 

technological developments that have enabled horizontal drilling and fracking also highlight 

potential challenges to price prediction. One key implication of these results in the importance 

of policymakers to monitor financial system impacts in the form of price stress testing that is 
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currently undertaken in the banking sector, to better monitor the transition from a carbon-

intensive to a low-carbon industry. These tests could be based upon the expected temperature 

increase, the subsequent amount of (carbon dioxide) CO² emissions, the degree of time-varying 

energy market integration, and the additional cost of being “green”. Based on our findings we 

could say that the systemic risk induced by decarbonisation is expected to be higher in times of 

high energy market integration compared to periods of market segmentation. 
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Figure 1: 5-Year Integration Index of Various Stock Market Portfolios to WTI-Oil  

 

 
Notes: The Figure plots the monthly degree of integration between various stock portfolios and 

WTI-Oil estimated from November 1994 to May 2017. The Figure clearly shows one very 

important finding that all markets show an almost perfect level of integration (this is approx. 1) 

with WTI from 2008 - 2013. This period is exactly when the Fed performed "Quantitative 

Easing (QE)", which started on late November 2008 and ended when Bernanke announced on 

September 2013 a cut-back of the Fed's QE programme. As a result, QE lead to a near perfect 

and stable level of integration of all markets, regardless whether emerging or developed, or 

combinations thereof. 
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Table 1: Descriptive Statistics 

Variable (Levels) N Mean StDev Minimum Maximum Skewness 

Excess 

Kurtosis 

EM 329 622.8000 302.7000 179.0000 1337.4000 0.3900 -1.2800 

MXWO 329 1090.6000 387.1000 423.1000 1878.3000 0.0500 -1.0200 

ACWI 329 268.7000 95.0800 104.2800 455.1700 0.0400 -1.0900 

Europe 329 1183.4000 439.4000 447.0000 2235.4000 -0.0300 -0.8500 

G7 329 965.1000 337.4000 384.3000 1691.1000 0.1000 -0.9500 

Far East 329 2693.5000 502.6000 1472.5000 3892.3000 -0.2300 -0.7000 

North America 329 1158.9000 527.4000 311.7000 2411.5000 0.2300 -0.6000 

S&P 500 329 1123.0000 510.0000 304.0000 2384.2000 0.2900 -0.4700 

WTI 329 46.7300 30.3100 11.2800 133.9300 0.7900 -0.6300 

Brent 329 47.6600 33.9100 9.8200 132.7200 0.8700 -0.5700 

1-Year U.S. Bond 329 3.1350 2.3940 0.1000 8.4000 0.1400 -1.3100 

Variable 

(Returns)        

R_EM 329 0.0020 0.0292 -0.1505 0.0669 -1.0400 3.4200 

R_MXWO 329 0.0016 0.0188 -0.0918 0.0450 -0.8400 2.0800 

R_ACWI 329 0.0016 0.0192 -0.0964 0.0472 -0.8800 2.3500 

R_Europe 329 0.0015 0.0219 -0.1041 0.0537 -0.8000 1.9700 

R_G7 329 0.0015 0.0186 -0.0883 0.0439 -0.7900 1.8400 

R_Far East 329 -0.0003 0.0246 -0.0898 0.0913 -0.1100 1.1600 

R_North America 329 0.0025 0.0183 -0.0865 0.0445 -0.8200 2.0100 

R_S&P 500 329 0.0025 0.0181 -0.0806 0.0459 -0.7800 1.8000 

R_WTI 329 0.0010 0.0371 -0.1462 0.1638 -0.3100 2.0100 

R_Brent 329 0.0011 0.0397 -0.1351 0.1993 -0.1700 2.4100 

R_1-year U.S. 

Bond 329 0.0009 0.0021 -0.0037 0.0086 0.7600 0.8900 

Notes: The Table reports the descriptive statistics (mean, standard deviation (StDev), minimum, Maximum, 

Skewness and excess kurtosis) of the key variables investigated in the study. The top panel reports levels, while 

the bottom panel reports returns. The Emerging Market (EM), Developed countries (MXWO), Developed and 

Emerging (ACWI), Europe, G7, Far East, and North America are all MSCI stock index portfolios. The MSCI index 

portfolios and the Standard & Poor’s (S&P) 500 index are priced in U.S. dollars. West Texas Intermediate (WTI) 

and Brent are oil prices expressed in U.S. dollars. The 1-year U.S. Bond is the yield of a 1-year U.S. Treasury 

bond. The bottom panel reports the returns on these prices. The sample period is from January 1990 to May 2017. 
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Table 2: Stock Portfolio Autoregressive Properties 

Variable (Returns) AR(1) Coefficient t-statistic p-value 

R_EM 0.1665 2.99 0.003 

R_MXWO 0.0920 1.65 0.099 

R_ACWI 0.0993 1.79 0.075 

R_Europe 0.0915 1.64 0.101 

R_G7 0.0858 1.54 0.124 

refers East 0.0904 1.63 0.105 

R_North America 0.0608 1.09 0.275 

R_S&P 500 0.0528 0.95 0.343 
Notes: The Table reports the first order autoregressive (AR(1)) properties of each  index portfolio. Only the 

Emerging Markets (EM), MXWO and the combined ACWI portfolios had statistically significant AR(1) 

coefficients. This information is later used as a robustness test for construction of the integration index.    
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Table 3: Pearson Correlations of Variables 

 R_EM R_MXWO R_ACWI R_Europe R_G7 rare East 

R_North 

America R_S&P 500 R_WTI R_Brent 

R_MXWO 0.7700          

p-value 0.0000          

R_ACWI 0.8050 0.9980         

p-value 0.0000 0.0000         

R_Europe 0.7230 0.9220 0.9230        

p-value 0.0000 0.0000 0.0000        

R_G7 0.7460 0.9970 0.9920 0.8980       

p-value 0.0000 0.0000 0.0000 0.0000       

R_Far East 0.5880 0.7560 0.7550 0.5990 0.7630      

p-value 0.0000 0.0000 0.0000 0.0000 0.0000      
R_North 

America 0.7170 0.9170 0.9140 0.8110 0.9210 0.5230     

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000     

R_S&P 500 0.7000 0.9130 0.9080 0.8060 0.9170 0.5180 0.9970    

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000    

R_WTI 0.1880 0.1460 0.1560 0.1750 0.1370 0.1220 0.0870 0.0670   

p-value 0.0010 0.0080 0.0040 0.0010 0.0130 0.0270 0.1140 0.2230   

R_Brent 0.2210 0.1630 0.1760 0.1920 0.1540 0.1440 0.1040 0.0850 0.9400  

p-value 0.0000 0.0030 0.0010 0.0000 0.0050 0.0090 0.0600 0.1230 0.0000  
R_1-year 

U.S. Bond -0.1830 -0.1780 -0.1790 -0.1410 -0.1800 -0.1980 -0.1410 -0.1360 -0.1260 -0.1180 

p-value 0.0010 0.0010 0.0010 0.0100 0.0010 0.0000 0.0110 0.0140 0.0220 0.0320 

Notes: The table reports the pairwise Pearson correlations and associated p-values for the variable returns for the full sample period from January 1990 to May 

2017. All correlations are positive and significant except for the returns on the 1-year U.S. bond, where the pairwise correlations are all negative and significant. 

This suggests that in the full sample, an increase (decrease) in the bond price resulted in a decrease (increase) in stocks. This is consistent with bonds and stocks 

been investment substitutes. The highest stock market correlations were between the developed country stock indices (e.g. MXWO: G7 was 0.9970), whereas the 

lowest were between the Far East and the U.S. S&P 500 index (0.5160). Brent and WTI were also highly correlated at 0.9400. 
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Table 4: Oil-Stock Integration Regressions 

EM Coefficient SE t-statistic p-value  MXWO Coefficient SE t-statistic p-value  ACWI Coefficient SE t-statistic p-value 

Constant 0.0002 0.0028 0.0800 0.9380  Constant 0.0015 0.0018 0.8600 0.3890  Constant 0.0013 0.0018 0.7100 0.4780 

φ 0.5741 0.1357 4.2300 0.0000  φ 0.6057 0.1472 4.1100 0.0000  φ 0.6496 0.1457 4.4600 0.0000 

T1 0.0035 0.0044 0.8000 0.4250  T1 0.0023 0.0028 0.8100 0.4180  T1 0.0013 0.0029 0.4500 0.6500 

T2 -0.0084 0.0049 -1.7300 0.0850  T2 -0.0008 0.0031 -0.2700 0.7840  T2 -0.0028 0.0032 -0.8600 0.3880 

T3 0.0060 0.0042 1.4300 0.1540  T3 0.0004 0.0026 0.1400 0.8900  T3 0.0003 0.0028 0.1100 0.9110 

AR2 0.0710     AR2 0.0450     AR2 0.0560    

Europe      G7      Far East     

Constant -0.0001 0.0021 -0.0400 0.9700  Constant 0.0016 0.0018 0.9200 0.3590  Constant 0.0008 0.0023 0.3300 0.7400 

φ  0.6298 0.1480 4.2600 0.0000  φ 0.6596 0.1548 4.2600 0.0000  φ 0.5490 0.1949 2.8200 0.0050 

T1 0.0031 0.0033 0.9300 0.3530  T1 0.0008 0.0028 0.2700 0.7860  T1 -0.0008 0.0036 -0.2100 0.8340 

T2 -0.0007 0.0037 -0.2000 0.8390  T2 -0.0025 0.0031 -0.8000 0.4250  T2 -0.0069 0.0039 -1.7600 0.0790 

T3 0.0022 0.0032 0.6900 0.4920  T3 -0.0006 0.0027 -0.2200 0.8230  T3 0.0006 0.0034 0.1800 0.8560 

AR2 0.0500     AR2 0.0490     AR2 0.0260    

NA      S&P500           

Constant 0.0024 0.0018 1.3200 0.1860  Constant 0.0026 0.0018 1.4500 0.1490       

φ 0.6632 0.1594 4.1600 0.0000 
φ  φ  

0.6439 0.1694 3.8000 0.0000       

T1 0.0016 0.0028 0.5600 0.5790  T1 0.0014 0.0028 0.4900 0.6230       

T2 -0.0020 0.0031 -0.6400 0.5240  T2 -0.0021 0.0031 -0.6800 0.4970       

T3 -0.0016 0.0027 -0.5900 0.5580  T3 -0.0020 0.0027 -0.7600 0.4500       

AR2 0.0490     AR2 0.0400          

Notes: The Table reports the full sample period (January 1990 to May 2017) Ordinary Least Squares regression of Equation (2). φ is the integration coefficent, T1, 

T2 and T3 are dummy variables for the period from January 1990 to the onset of the Asian Crisis in July 1997; August 1997 to October 2001, which includes the 

impact of September 11, 2001; November 2001 until September 2008, when Lehman defaulted on September 15, 2008. AR2 represents the Adjusted R-squared of 

the regression. 
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Table 5: Oil-Stock Portfolio Integration Index (Annual Average) 
Level N EM MXWO ACWI Europe G7 Far East NA S&P 500 

1995 12 0.9105 0.7023 0.6886 0.1774 1.3958 0.5693 0.8099 0.9361 

1996 12 0.5047 0.7041 0.6870 0.1503 1.2793 0.6453 0.7408 0.8496 

1997 12 0.4208 0.3380 0.2086 -0.1144 0.5428 0.5389 0.1365 0.0780 

1998 12 0.3065 -0.3516 -0.6629 -0.6803 -0.0581 0.4266 -0.4701 -0.7232 

1999 12 -0.0983 -0.0783 -0.0733 0.0715 -0.1097 0.4832 0.0294 -0.0614 

2000 12 -0.3051 -0.2117 -0.2441 -0.1399 -0.2222 0.4548 0.0839 0.0452 

2001 12 -0.2277 -0.2466 -0.2467 -0.1625 -0.2583 -0.0502 0.0793 0.0567 

2002 12 -0.2238 -0.2117 -0.2012 -0.1805 -0.2112 0.2488 -0.0541 -0.0745 

2003 12 -0.2909 -0.3946 -0.3905 -0.4502 -0.4129 0.1364 -0.2198 -0.2320 

2004 12 -0.2787 -0.6472 -0.6610 -0.7874 -0.6240 -0.1329 -0.3865 -0.3733 

2005 12 0.0778 -0.4549 -0.4398 -0.6443 -0.4368 0.1123 -0.3514 -0.3390 

2006 12 -0.2407 -0.8723 -0.8608 -1.0831 -0.8234 0.0685 -0.7254 -0.6747 

2007 12 -0.5951 -2.3795 -2.3253 -2.8443 -2.2847 -0.0541 -1.6548 -1.5243 

2008 12 1.1869 0.5176 0.5437 0.1890 0.4388 0.7266 0.2107 0.3550 

2009 12 0.8405 0.9473 0.9282 0.8711 0.9724 0.7615 1.0418 1.0890 

2010 12 0.7586 0.8901 0.8679 0.8222 0.9113 0.7821 0.9693 1.0271 

2011 12 0.7604 0.8987 0.8773 0.8342 0.9174 0.7671 0.9815 1.0444 

2012 12 0.7449 0.8641 0.8465 0.7956 0.8838 0.7219 0.9485 1.0014 

2013 12 0.6503 0.7682 0.7511 0.7003 0.7877 0.5874 0.8557 0.8976 

2014 12 0.4874 0.5657 0.5562 0.5988 0.5557 0.1894 0.5797 0.6050 

2015 12 0.6295 0.5422 0.5502 0.6211 0.5279 -0.1702 0.5652 0.5480 

2016 12 0.6851 0.3370 0.3699 0.4861 0.3116 -0.0202 0.2907 0.2290 

2017 5 0.7228 0.2958 0.3367 0.4799 0.2535 0.1031 0.1986 0.1188 

Average  0.3657 0.1370 0.1175 -0.0062 0.2444 0.3580 0.2287 0.2432 

F-Statistic  69.6600 59.3400 56.9000 42.7900 71.3300 36.1800 57.1400 59.2200 

p-value  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Notes: The Table reports the average annual integration index between various stock portfolios and the WTI oil price, estimated from Equation (3) using 

monthly data. The F-statistic is a test of differences in annual averages and is significant for all portfolio combinations. The sample period is from January 

1990 to May 2017. Only data from 1995 is reported since the earlier years of data was used for the index construction. 1994 consisted of only two months 

of data and so is not reported. Only five months of 2017 data was available at the time of estimation. 
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Table 6: Oil-Stock Portfolio Integration Index (Annual Standard Deviation) 
Level N EM MXWO ACWI Europe G7 Far East NA S&P 500 

1995 12 0.1814 0.0682 0.0474 0.0282 0.1124 0.0666 0.0399 0.0376 

1996 12 0.0946 0.0539 0.0667 0.0244 0.0816 0.0394 0.0788 0.0865 

1997 12 0.0191 0.1923 0.2650 0.1589 0.1687 0.0727 0.1786 0.2249 

1998 12 0.2874 0.3292 0.4718 0.4406 0.2596 0.0461 0.4724 0.5675 

1999 12 0.1068 0.2669 0.2852 0.1323 0.2821 0.1124 0.1877 0.1819 

2000 12 0.0524 0.0940 0.0932 0.1150 0.1037 0.1323 0.1020 0.0925 

2001 12 0.0657 0.0400 0.0528 0.0572 0.0432 0.1940 0.0563 0.0620 

2002 12 0.0424 0.0903 0.0887 0.1294 0.0977 0.1977 0.0958 0.0943 

2003 12 0.1428 0.0881 0.0919 0.0716 0.0857 0.1003 0.0950 0.0922 

2004 12 0.1636 0.0871 0.0929 0.0291 0.0930 0.1112 0.0991 0.0953 

2005 12 0.0999 0.0877 0.0907 0.0785 0.0844 0.1903 0.0600 0.0493 

2006 12 0.3401 0.3407 0.3526 0.4246 0.3134 0.0417 0.2550 0.2448 

2007 12 0.2513 0.8256 0.7910 0.7804 0.8249 0.1065 0.6537 0.6460 

2008 12 0.7180 1.2201 1.2131 1.7620 1.1822 0.5839 1.0310 1.0104 

2009 12 0.0536 0.0485 0.0493 0.0486 0.0501 0.0537 0.0572 0.0573 

2010 12 0.0110 0.0263 0.0239 0.0320 0.0250 0.0429 0.0219 0.0257 

2011 12 0.0070 0.0165 0.0138 0.0164 0.0181 0.0476 0.0136 0.0144 

2012 12 0.0131 0.0332 0.0291 0.0369 0.0348 0.0237 0.0375 0.0495 

2013 12 0.1708 0.1694 0.1687 0.1579 0.1701 0.2521 0.1656 0.1698 

2014 12 0.1278 0.0895 0.0943 0.0808 0.0908 0.1945 0.1063 0.1019 

2015 12 0.0762 0.1480 0.1390 0.1257 0.1479 0.2309 0.1430 0.1571 

2016 12 0.0802 0.0819 0.0841 0.0795 0.0829 0.2214 0.0859 0.0917 

2017 5 0.0149 0.0213 0.0205 0.0174 0.0232 0.0116 0.0248 0.0289 

Average  0.1330 0.1848 0.1931 0.2019 0.1833 0.1296 0.1710 0.1761 

Levene’s Test  11.4200 9.4300 10.7700 12.5700 8.2800 4.5200 6.4900 7.6300 

p-value  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Notes: The Table reports the standard deviation of the annual integration index between various stock portfolios and the WTI 

oil price estimated from Equation (3) using monthly data. Given non-normality in the underlying return series the Levene’s-

statistic is used to test equality of variance and is significant (unequal) for all portfolio combinations. The sample period is from 

January 1990 to May 2017. Only data from 1995 is reported since the earlier years of data was used for the index construction. 

1994 consisted of only two months of data and so is not reported. Only five months of 2017 data was available at the time of 

estimation. 
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Table 7: Asset Allocation Strategy 
 Panel A: Results without 

Integration 

Panel B: Results with Integration Difference Panel B–A 

Panel A: Results for individual Markets 

without Integration 

Mean SD SR Mean SD SR Mean SD SR 

MSCI Emerging Markets 0.000089 0.029987 0.0030 0.000981 0.030573 0.0321 0.000892 0.000586 0.0291 

MSCI MXWO (Developed Markets) 0.001005 0.019376 0.0519 0.002549 0.028544 0.0893 0.001544 0.009168 0.0374 

MSCI ACWI (Emerging and Developed 

Markets) 

0.000930 0.019830 0.0469 0.002434 0.028624 0.0850 0.001504 0.008794 0.0381 

MSCI Europe 0.000796 0.022683 0.0351 0.001880 0.029943 0.0628 0.001084 0.007260 0.0277 

MSCI G7 Countries 0.001027 0.018950 0.0542 0.002740 0.028268 0.0969 0.001713 0.009318 0.0427 

MSCI Far East -0.000888 0.022271 -0.0009 0.000185 0.028639 0.0065 0.001073 0.006368 0.0074 

MSCI North America 0.001865 0.019336 0.0968 0.003084 0.028433 0.1084 0.001219 0.009097 0.0116 

S&P 500 (U.S. only) 0.001871 0.019059 0.0982 0.003074 0.028678 0.1072 0.001203 0.009619 0.0009 

WTI Oil 0.000963 0.037137 0.0259 - - - - - - 

Notes: This Table reports the mean, the standard deviation (SD) and the Sharpe Ratio (SR) for different trading strategies with no transaction costs. The Sharpe 

Ratio is a measure for calculating risk-adjusted return, and is the average return earned in excess of the risk-free rate divided by the standard deviation of return on 

an investment. Panel A consists of results for a passive strategy with 100% investment in a single market without considering the integration between stock markets 

and WTI oil. Panel B represents the situation where xt% is invested in a stock market and (1-xt)% in WTI oil. The time-varying weight xt is determined by the level 

of WTI-stock market integration, whereas the weight xt is restricted to 0 ≤ φt ≤ 1. The parameter φt is the time-varying level integration. Bold values mark the best 

value within each group, i.e. the highest mean, the lowest SD and highest SR. The sample period is from November 1994 to May 2017 (271 months) and all results 

are based on excess returns. 
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Taiwan 

Yin Chu, Wenlan School of Business, Zhongnan University of Economics and Law, China 

 

Abstract 

This paper firstly investigates the frequency- and time-varying co-movement and causal 

relationship between oil prices (proxied by West Texas Intermediate, Brent, Dubai and 

Nigerian Forcados oil crude price) and international geopolitical risk based on wavelet analysis 

over the period 1985-2016. Overall, our results demonstrate significant dynamic co-movement 

and causality in the varying time-frequency domain. We find high degree of co-movement 

between international geopolitical risk and oil prices at high frequencies (short run) for the 

entire sample period, however, such correlation no longer exists at low frequencies (long run) 

for most of the time. Our results are also robust to controlling for global economic outlook. 

Our findings provide valuable implications for policy makers and oil market investors based 

on the information of geopolitical risk and its dynamic relationships with oil prices; in 

particular, most of oil-producing countries are located in sensitive geopolitical areas. 

 

Keywords: Oil Price, Wavelet Coherence, Phase-Difference, Time-Frequency Domain, 

Geopolitical Risk. 

 

  



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

20 

 

1. Introduction 

Understanding the fluctuation of crude oil prices is vital due to its close relationship with the 

macro economy and the performance of other markets.11 Previous studies have studied the 

various determinants of oil prices (e.g., Benhmad, 2012; Mu and Ye, 2011; Tiwari et al., 2013; 

Wang and Sun, 2017). Among these factors, a critical one is geopolitical risk (Naccache, 2011; 

Speight, 2011; Noguera-Santaella, 2016), which also attracts considerable attention from both 

academic economists and policy makers. Political unrest and terrorist attacks, if not civil or 

international wars, are common phenomena that historically plagued many nations in the 

world. Major geopolitical events are often perceived to result in dramatic changes in the 

business cycle and in financial markets (Greenspan, 2002; Carney, 2016; Berkman et al., 2011). 

There is an increasing body of literature analyzing the nature of geopolitical risks, particularly 

conflicts, and their relation to economics (Skaperdas, 2008). Yet, up so far, the literature of oil 

prices and geopolitical risks are largely developed in a parallel fashion. The interaction between 

the two has not been addressed. This paper attempts to reduce this gap in literature.  

 

As a threat to the market volatility, geopolitical risk is critical in explaining oil market 

behaviors. The reason is that it can alter investors’ expectation on the market condition both in 

the short run and long run. On the one hand, as an immediate response, investors may anticipate 

a higher likelihood of supply disruption or sharp change in demand in the near future. This 

would lead to fluctuations in oil prices in the short run even though such changes do not 

eventually occur (Noguera-Santaella, 2016). On the other hand, geopolitical risks may have 

lasting effects on the stability of the contracting frameworks, business governance and market 

regulation, which all rely on political and socio-economic stability to be effective (Van der 

Linde et al., 2004). Accordingly, investors may be suspicious about oil market outcomes over 

a longer horizon due to uncertainty. Such pessimism may last in the long run unless geopolitical 

risks are reconciled by outside interventions.12 In sum, information of geopolitical risks should 

be absorbed and reflected in oil prices. 

 

Causation may also run from oil prices to geopolitical risks. Oil is commonly conjectured as a 

resource to trigger conflict (Caselli et al., 2015). Historical and political scientist have 

identified a potential role for oil riches in dozens of (often militarized) territory claim tensions, 

border disputes or even wars.13 This relates to the phenomenon of “resource curse”: natural 

resource abundance magnifies the risk of conflict. A large body of economic theoretical 

literature has identified multiple channels through which it occurs, which are nicely 

                                                           
11 For the analyses between crude oil prices and macroeconomic performances, see Hamilton (1983), Mork 

(1989), Lee et al. (1995), Hamilton (1996), Hamilton (2003), Killian (2008), Elder and Serletis (2010), Aguiar-

Conraria and Soares (2011), Rahman and Serletis (2011), Naccahe (2011), etc. For the relation between oil prices 

and other markets, previous researchers typically investigate this issue by looking into stock returns. For this 

strand of literature, see Jones and Kaul (1996), Lee et al. (2012), Asteriou and Bashmakova (2013), Gupta and 

Modise (2013), Cunado and Perez de Gracia (2014), Narayan and Gupta (2015), etc. Please refer to Ramos and 

Veiga (2011) for a more thorough survey. 
12 De Soysa, Gartzke and Lie (2011) demonstrate that oil-importing superpowers like the U.S. have the incentive 

to protect oil-rich countries such that major petrostates may be less likely to suffer from conflicts due to oil 

predation. If true, it implies that the long-term impact of geopolitical risks, at least that around major oil-producing 

arears, largely diminishes. 
13 Examples of militarized tensions involving territorial claims include areas in the South China Sea, the East 

China Sea and the border between Sudan and South Sudan, etc. Examples of border disputes include those between 

Nigeria and Cameroon (Bakassi peninsula), Ecuador and Peru (Cordillera del Condor), China and Vietnam 

(Paracel Islands), etc. Examples of wars include the Iran-Iraq war, Iraq’s invasion of Kuwait and the Falklands 

War, etc. For references of these conflicts as well as others, please see Caselli et al. (2015). 
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summarized by Berman et al. (2017). Channels for large-scale conflicts under the context of 

geopolitical risks relevant for the current study may include: (1) presence of natural resources 

increases the prize to be seized through the capture of the territory or the state; (2) obtaining 

natural resources enhances rebellion feasibility by relaxing financing constraints of the set-up 

and sustainment of a rebel movement; (3) resource wealth makes rentier states rely on resource 

rents and not develop state capacity and institutions, making them less effective in 

counterinsurgency; (4) cheap labor is freed up if resource price spikes lead to the boost of 

capital-intensive resource extracting and therefore shrink labor-intensive sectors.14 Resource 

price spikes, which increase resource wealth, would facilitate the above channels through 

which resource abundance raise conflict risk (e.g., Dube and Vargas, 2013; Bazzi and 

Blattman, 2014; Berman et al., 2017). In sum, variations in oil prices may affect geopolitical 

risks.  

 

Perhaps one important reason for a lack of literature on the interaction between geopolitical 

risk and oil prices is the difficulty to find a reliable measure for geopolitical risk. We exploit a 

new data set to investigate this issue: the Geopolitical Risk Index (henceforth, GPR index), 

constructed by Caldara and Iacoviello (2017), which is the first data to measure geopolitical 

risk comprehensively and objectively. The authors define geopolitical risk as the risk associated 

with wars, terrorist acts and tensions between states that affect the normal course of domestic 

politics and international relations. The GPR index incorporates both pure geopolitical risks 

(e.g., military-related tension, nuclear tension, war and terrorist threats) and actual geopolitical 

events (as opposed to just risks, e.g., the beginning of a war, terrorist acts), therefore 

representing a comprehensive measure of geopolitical uncertainty. The quantitative index is 

available from 1985 to 2016, and is constructed by counting the occurrence of words regarding 

geopolitical tensions in leading international newspapers.15 As for oil prices, we use the West 

Texas Intermediate (WTI) crude oil spot price for our benchmark analysis, which is commonly 

used in the previous literature. We also exploit the Brent, Dubai and Nigerian Forcados crude 

oil spot prices to check for robustness of our results. 

 

We utilize a novel wavelet analysis technique to explore the relationship between the GPR 

index and each of the 4 crude oil prices.16 Wavelet analysis expands the time series into a time-

frequency space whereby researchers can visualize both time- and frequency-varying 

information of the series in a highly intuitive way.17 In contrast, conventional time-domain 

methods (e.g, cointegration analysis and vector correction model), which leave out the 

frequency-domain, fail to capture useful and important information under the analysis of oil 

prices because the relations between oil and macroeconomic variables may vary at different 

frequencies (Aguiar-Conraria and Soares, 2011; Naccache, 2011; Benhmad, 2012; Tiwari et 

al., 2013).18 In our case, although it is reasonable to think that oil prices and geopolitical risk 

                                                           
14 Other channels through which natural resource abundance facilitates smaller-scale conflicts or violence (not the 

focus of the current study) include: (1) exacerbated grievances due to frustrations from environmental degradation 

or banned access to lucrative mining jobs; and (2) changes in the size and composition of population in mining 

areas due to migration under mining booms. For a literature review of these channels, see Berman et al. (2017).  
15 Such methodology is pioneered by Saiz and Simonsohn (2013) and Baker et al. (2016). 
16 The methodology has been commonly applied in oil market analysis in previous literature (Aguiar-Conraria 

and Soares, 2011; Naccache, 2011; Benhmad, 2012; Vacha and Barunik, 2012; Tiwari et al., 2013; Lee and Chang, 

2015). 
17 Frequency in wavelet analysis implies the different relationships between variables at different time scales. 
18 For instance, Naccache (2011) demonstrates that oil prices may act like a supply shock at high and medium 

frequencies (in the short and medium run), therefore affecting industrial production, whereas industrial production 

affects oil prices at lower frequencies (in the longer run) through a demand effect. 
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are correlated at high frequencies, the co-movement at low frequencies is ambiguous since oil-

importing superpowers have incentives to intervene and eventually reconcile geopolitical risks, 

particularly those around major oil-exporting regions. Thereby, wavelet analysis is superior in 

the sense that it allows us to catch the dynamic relationship between geopolitical risk and oil 

price across different time and frequencies for advanced investigation.  

 

Such attractiveness of wavelet analysis sheds light on practical recommendations for energy 

commodity management. Oil markets are comprised of investors with different time horizons 

(Ellen and Zwinkels, 2010). Meanwhile, since most oil-producing countries are located in 

sensitive geopolitical areas, the geopolitical risk information is vital for business strategies in 

the oil markets. Decomposing data into time scales, wavelet analysis thus provides useful 

insight on the relative importance of geopolitical information for heterogenous agents with 

different time horizons and effective combinations of financial products of different maturity 

terms for risk diversification (Chang et al., 2015). The time- and frequency-varying features in 

causality can also significantly improve price prediction accuracy and decision-making 

process.  

 

Our empirical works begin with tests for the GPR index and oil prices for unit roots and 

cointegration. After providing the presence of unit roots and cointegration relationships, we 

perform the wavelet coherency analysis to investigate the dynamic co-movement between 

crude oil prices and the GPR index across different time periods and frequencies, and the phase-

difference technique to derive the time-varying causal relationship between the two. In this 

way, we can observe high-frequency (short-term) and low-frequency (long-term) relationships 

between the crude oil prices and the GPR index as well as possible structural breaks and time 

variations. For robustness check, we also apply the partial wavelet coherency and partial phase 

difference to account for the effects of global economic outlook (proxied by the GDP growth 

forecast of the world economy) on geopolitical risk and oil prices, aiming to reveal the true co-

movement and causality between the two variables. Overall, for all 4 oil price indexes, we find 

high degree of co-movement between international geopolitical risk and oil prices at high 

frequencies (wavelet scale of less than 2 years), whereas the co-movement becomes weak at 

low frequencies. We identify a structural break in the relationship after 2010 where the two 

variables also comoves at low frequencies. As for the (partial) phase difference analyses, 

interestingly, we observe different patterns across different oil price indexes. Generally, 

geopolitical risk positively contributes to oil prices for WTI and Brent index. On the other 

hand, we mainly find that oil prices positively contribute to geopolitical risks for Dubai and 

Nigerian index.  

Our findings provide important policy implications in several aspects. First, geopolitical risk 

information is particularly relevant for short-term oil market investors (e.g., arbitragers or 

speculators) with a horizon less than 2 years. Our results suggest that they should keep a close 

eye on geopolitical risk and exploit its variations to improve oil price forecast accuracy and 

make more effective investment decisions. Specifically, short-term investors in the WTI and 

Brent market should consider adding more assets of oil to gain profits when geopolitical risk 

rises. Second, policy makers, particularly those in major oil-importing countries, should be 

alerted about national energy security in front of increasing geopolitical risk and engage 

adequate efforts to prevent it from escalating to a serious level. Third, since oil prices all move 

in phase with geopolitical risk in all 4 major markets, there seems to be no room for hedging 

and risk diversification across different oil markets purely based on geopolitical risk. Fourth, 

based on evidence of positive effects of oil prices on geopolitical risks in the Dubai and 
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Nigerian market, we also emphasize the importance for policy makers to understand the 

channel through which oil price spikes leads to higher geopolitical risk. In sum, our results help 

investors and policy makers have a deeper understanding about oil price fluctuations and 

business strategies based on common and yet critical information: geopolitical risk, which is a 

perspective that has been largely unknown.19 

 

To our best knowledge, the only study that specifically attempts to investigate geopolitical risks 

and oil prices is Noguera-Santaella (2016).20 The author examines the effects on oil prices of 

32 geopolitical events including revolutions, civil and international wars and conflicts. Our 

study improves in several aspects. First, rather than discrete dummy variables for limited actual 

conflicts, we take advantage of a better and more comprehensive measure of geopolitical risk 

which incorporates not only actual events such as terrorist activities and wars between states, 

but also the potential of adverse events such as inter-state tensions or disputes. This makes our 

study more relevant for usual decision-making for investors in oil market. Second, compared 

to the static analysis employed in Noguera-Santaella (2016), we investigate the dynamic 

relationship between geopolitical risk and oil prices in time- and frequency-domain, providing 

more precise investment strategy recommendations for oil market participants at different time 

horizons. Third, Noguera-Santaella (2016) only considers the effects of geopolitical events on 

oil prices, whereas we also consider the reverse causality. Fourth, the paper applies the ARMA 

and GARCH techniques, which may easily suffer from problems such as unit root and 

instability of variables. If true, this would invalidate the empirical results. Finally, the paper 

only uses the WTI oil prices, while we provide extra robustness checks by comparing 3 

additional spot crude oil prices and observe different patterns in the relationship. Our study 

also relates to a considerable body of empirical literature documenting evidence that the oil 

abundance can result in conflicts.21 Some of the studies take advantage of oil price spikes to 

examine the impact of a rise in oil revenue on the occurrence or intensity of conflicts. However, 

the vast majority of them focus only on civil conflicts or small-scale violence. As an exception, 

Caselli et al. (2015) analyzes the nexus between the location of oil fields and interstate wars. 

We extend the horizon to large-scale international geopolitical risk and link it to oil prices. 

 

Our study contributes to the literature in several aspects. First, we firstly investigate the 

interaction between oil prices and the true geopolitical risk, proxied by a comprehensive index 

that covers not only breakouts of geopolitical events but also risks indicating higher likelihood 

of such adverse events either in the short run or long run. Second, we study the dynamic 

bidirectional causality between oil prices and geopolitical risk. Previous researches have only 

looked at single-direction causality running from one variable to the other. Third, by exploiting 

the wavelet technique, we extend previous time-domain analysis to frequency-domain analysis, 

which renders important market strategy recommendations for different investors in the oil 

market. 

 

                                                           
19 Previous literature look into other perspectives in forming investment (e.g., hedging, risk diversification, etc.) 

strategies in the oil markets: exchange rates (Benhmad, 2012; Tiwari et al., 2013), other energy commodities 

(Vacha and Barunik, 2012), spot and future contracts (Chang and Lee, 2015), etc.   
20 Two other papers, Kollias et al. (2013) and Blomberg et al. (2009) look into the impact of terrorist acts, a 

narrower perspective of geopolitical risk, on oil prices. 
21 See De Soysa (2002), Fearon and Laitin (2003), Ross (2004, 2006), Fearon (2005), Humphreys (2005), Cotet 

and Tsui (2013), Dube and Vargas (2013), Lei and Michaels (2014) and Caselli et al. (2015) for oil abundance 

and civil conflicts. 
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The remainder of the paper proceeds as follows. Section 2 illustrates the empirical 

methodology applied in this study. Section 3 describes the data, discusses the empirical results 

and proposes some broad investment strategy recommendations. Section 4 concludes. 

 

2. Methodology 

Wavelet analysis is developed in mid-1980s as an alternative to the Fourier analysis, which is 

a common methodology to uncover relations at different frequencies. The major flaw of the 

Fourier analysis is that it discards time-localized information, making it difficult to distinguish 

transient relations or to identify structural breaks (Auiar-Conraria and Soares, 2011). In 

contrast, the wavelet transform decomposes a time series into some basis wavelets, which are 

stretched and translated versions of a given mother wavelet localized in both the time and 

frequency domains. In this way, the series expands into a time-frequency space through which 

researchers can view its oscillations in an intuitive manner. Moreover, wavelet analysis also 

works well for non-stationary or locally stationary series, while Fourier analysis is merely 

suitable for stationary series (Roueff and Sachs, 2011). 

 

In this paper, we choose the continuous wavelet transform proposed by Aguiar-Conraria and 

Soares (2011) and Aguiar-Conraria et al. (2012) to decompose the concerned series into 

wavelets. For a given time series x(t), the continuous wavelet transform, represented as 

𝑊𝑥(𝑠, 𝜏), is expressed as: 
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s and 𝜏 are the scale and location parameters respectively, with the former controlling how the 

mother wavelet is stretched and the latter setting where the wavelet is centered.  

 

A mother wavelet of the continuous wavelet transform must satisfy three conditions. First, its 

mean must equal zero such that it oscillates across positive and negative values, and thus locally 

nonzero. In other words, 
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where )(ˆ   is the Fourier transform of the mother wavelet )(t . In this paper, we choose the 

Morlet wavelet, introduced by Grossman and Morlet (1984), as the applicable mother wavelet, 

which is the most commonly used and has the following form: 

ee
tit 2/4/1 2

00)(   . 

Following Grinsted et al., (2004), we set 𝜔0 to be 6, under the condition of which the Morlet 

wavelet reaches the optimal trade-off between time and frequency localization. Since Auiar-

Conraria and Soares (2013) have shown that the Fourier frequency is equal to 𝜔0/2𝜋𝑠, the 

wavelet scale is approximately the reciprocal of the Fourier frequency. This implies that a 

longer (shorter) wavelet scale corresponds to a lower (higher) frequency. 

 

In wavelet theory, the wavelet power spectrum of one series x(t) (i.e., the auto-wavelet power 

spectrum) is defined as |𝑊𝑥(𝑠, 𝜏)|2 , which measures the localized variance of x(t) at each 

frequency. In the situation of bivariate case, the cross-wavelet power spectrum is the square of 

the absolute value of the cross-wavelet transform of the two series, written as: 

           |||||| ),(),(),(
* 222
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where the asterisk presents the complex conjugation and x(t) and y(t) are the two series. The 

cross-wavelet power spectrum serves as an estimate of the localized covariance between x(t) 

and y(t) for a specified frequency. The wavelet coherency, which can be regarded as the local 

correlation between these two series, is calculated based on the cross-wavelet and auto-wavelet 

spectrum in the following fashion (Torrence and Webster, 1999): 
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where S is the smoothing operator along with both time and scale. The wavelet coherency is 

then a value within the range of [0,1] in a time-frequency window. Particularly, a coherency of 

zero indicates no co-movement between the two series, and stronger coherency suggests 

stronger co-movement between the two series.  

 

Given the fact that positive and negative co-movements cannot be distinguished from squared 

wavelet coherency, we then utilize wavelet phase difference to examine the positive and 

negative co-movements as well as lead-lag relationships between GPR index and oil prices. As 

suggested in Bloomfield et al., (2004), the phase difference which characterizes the phase 

relationship between x(t) and y(t) can be calculated as:     )
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Here I and R are the imaginary and real parts of the smoothed cross-wavelet transform. A zero 

value in the phase difference analysis results implies that the correspondent two series move 

together in the same direction, whereas a value of 𝜋 or −𝜋 indicates they move in opposite 

direction. Specifically, if 𝜙𝑥𝑦 ∈ (0, 𝜋/2), the two series move in phase (positively co-move), 

and x(t) leads y(t). If 𝜙𝑥𝑦 ∈ (
𝜋

2
, 𝜋), the two series move out of phase (negatively co-move), and 

y(t) leads x(t). If 𝜙𝑥𝑦 ∈ (−
𝜋

2
, 0), the two series move in phase and y(t) leads x(t). If 𝜙𝑥𝑦 ∈
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(−
𝜋

2
, −𝜋), the two series move out of phase and x(t) leads y(t). Previous studies argue that 

wavelet phase difference dominates the conventional Granger causality test because it can 

detect causality in both time and frequency domains whereas the Granger test only assumes a 

single causal relationship for the whole sample and at each frequency (Grinsted et al., 2004; 

Tiwari et al., 2013). 

 

Out of the concern that global economic outlook may exert considerable impact on both 

geopolitical risk and crude oil prices, we attempt to tease out the effects of global economic by 

using the GDP growth forecast of the world to reveal the true co-movement and causality 

between the series. We utilize partial coherency and partial phase difference to achieve as a 

tool. Following Aguiar-Conraria and Soares (2013), we define the square partial wavelet 

coherency between x(t) and y(t) with the series z(t) controlled for as follows: 
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where ),( sRxz  and ),( sRyz  represent the wavelet coherency between x(t) and z(t) and that 

between y(t) and z(t) respectively. We could then derive the partial phase difference as follows: 
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where I and R are respectively the imaginary and real parts of the complex partial wavelet 

coherency, 𝐶𝑥𝑦|𝑧(𝑠, 𝜏) , which is the complex type of 𝑅𝑥𝑦|𝑧(𝑠, 𝜏) before taking the absolute 

value.   

 

3. Data and Empirical Results 

In this section, we begin with the discussion of data employed in our study. Then we move on 

to talk about the empirical results and correspondent implications on investment strategy for 

oil market participants. Our empirical analysis consists of three steps. First, we test for the unit 

root for the GPR index, the crude oil prices and the world economic outlook data, and whether 

these variables are cointegrated. Second, we conduct a wavelet coherency analysis to observe 

the dynamic co-movement between the crude oil prices and the GPR index. Finally, we perform 

the phase difference technique to investigate the time-varying causal relationship between the 

two. In the second and third step, we also check for robustness our findings by applying partial 

wavelet coherency and partial phase difference to eliminate the effects of world economic 

outlook to uncover the real co-movement and causality between the crude oil prices and 

geopolitical risk. 

 

3.1 Data Description 

We take advantage of a novel data set to measure geopolitical risk: the GPR index, with higher 

value indicating higher risk. Constructed by Caldara and Iacoviello (2017), the data set is the 

first to evaluate geopolitical risk properly and comprehensively.22 Following the methodology 

                                                           
22 According to Caldara and Iacoviello (2017), the GPR index is advantageous to other available indexes of 

geopolitical risks which have inherent shortcomings in various aspects: (1) they are often qualitative and 

subjective; (2) they either stay rather constant over time, or are available only for a short period; (3) some 
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pioneered by Saiz and Simonsohn (2013) and Baker et al. (2016), the authors built the GPR 

index by reflecting automated text-search results of the electronic archives of 11 national and 

international newspapers: The Boston Globe, Chicago Tribune, The Daily Telegraph, Financial 

Times, The Globe and Mail, The Guardian, Los Angeles Times, The New York Times, The 

Times, The Wall Street Journal, and The Washington Post. The index is calculated based on 

the number of articles that contained words regarding geopolitical tensions for each month (as 

a share of the total number of news articles).23 The index is then normalized relative to the 

average in the 2000-2009 decade (roughly 350 articles per month). Put another way, a reading 

of 200, for instance, indicates that newspaper mentions of geopolitical risk in that month were 

twice as frequent as during the 2000s. 

The GPR index incorporates not only pure geopolitical threats and tensions but also actual 

geopolitical events and activities. The search identifies articles with references to 6 groups of 

words. The first 4 groups are related to geopolitical threats and tensions. Specifically, Group 1 

includes words associated with explicit mentions of geopolitical risk, as well as mentions of 

militarized tensions involving large regions of the world and a U.S. involvement. Group 2 

includes words directly associated with nuclear tensions. Groups 3 and 4 include mentions 

related to war threats and terrorist threats, respectively. Finally, as opposed to just risks, Groups 

5 and 6 capture press coverage of actual adverse geopolitical events (e.g., terrorist acts or the 

beginning of a war) which can be reasonably expected to result in increases in geopolitical 

uncertainty. Please refer to Caldara and Iacoviello (2017) for more detailed explanations of the 

words in each category.  

 

Since the outlook of world economy could influence oil prices (Aguiar-Conraria and Soares, 

2011; Naccache, 2011; Wang and Sun, 2017), we also check the robustness of our findings by 

accounting for the global economic outlook when performing the wavelet analysis between 

geopolitical risk and each of the 4 crude oil prices. We take advantage of the economic outlook 

data from the OECD Statistics. The OECD Economic Outlook data analyses the major 

economic trends over the coming 2 to 3 years. It provides in-depth coverage of the main 

economic issues and the policy measures required to foster growth in each member country as 

well as some non-member countries and the world. We choose the forecast of the GDP growth 

of the world to proxy the global economic outlook.  

[Insert Figure 1 here] 

 

Figure 1 reports the time series plots of the GPR index and the global economic outlook data. 

The GPR index ranges from around 50 to as high as over 200. We can see that it is characterized 

by several spikes which are associated with key geopolitical events that escalated tensions or 

conflicts. The first spike occurs during the Kuwait invasion and subsequent Gulf War in 1990-

1991. The most significant rise in the GPR index happens during the 9/11 terrorist attack and 

stays high until the US-Iraq war ended. Afterward, the index rises in correspondence to major 

                                                           
measures, though quantitative, are constructed based on variables that are meant to respond to, rather than measure 

geopolitical risks (e.g., gold, the dollar index and other financial market indicators). 
23 With press coverage being exploited, the authors’ methodology has the following potential flaw: the GPR index 

may correspond to or even be largely driven by changes in geopolitical-related risk aversion of the public or state-

dependent bias in news coverage. The authors tackle this issue by comparing the GPR index and a news-based 

index of disasters (an instrument used in Jetter, 2017), which is exogenous to geopolitical risk and yet likely to 

attract large media attention (and diminish media coverage of geopolitical risk). If the two are (negatively) 

correlated, it implies that the GPR index can be driven by variations in media attention unrelated with geopolitical 

risk. They find the correlation between the two index is statistically insignificant, alleviating such a concern. The 

authors conclude that the actual risk and media perception of risk are highly correlated. 
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terrorist events in the E.U. such as the March 2004 Madrid bombing, the July 2005 London 

bombing. The last notable spike is associated with geopolitical tensions in Ukraine and Iraq as 

well as the rise of the terrorist group, ISIS (Islamic State of Iraq and Syria). As for the world 

economic outlook data, the forecast of the world GDP growth rate ranges from -1% to 5% in 

our data sample. The world economy grows steadily through the end of the 1990s and most of 

the 1990s and 2000s. The forecasted economic downtowns are manifested in a few troughs in 

the figure, which include the early 1990s recession, the 1997 Asia financial crisis, the early 

2000s recession and the most dramatic one, the 2008 financial crisis.       

[Insert Figure 2 here] 

 

We obtain the spot crude oil prices (dollar/barrel) of the 4 origins (WTI, Brent, Dubai and 

Nigerian) from the BP Statistical Review of World Energy. The evolution of the 4 price time 

series is shown in Figure 2. At the first glance, we can tell that the 4 prices move closely 

together. The only notable difference is that the spike of the WTI oil price in 2010-2014 is not 

as large as those of Brent, Dubai and Nigerian oil. The oil price frequencies vary by different 

time domains. The crude oil prices oscillate around 20 dollars per barrel before 2000, but 

steadily turn upwards until 2007. The main reason may be contributed to the rapid economic 

growth of developing countries, such as China and India (Wang and Wu, 2013). However, we 

find that the structural break point exists in 2008, where the global financial crisis may account 

for the downward fall of oil prices (Chang and Berdiev, 2013; Lee and Hsieh, 2014). Afterward, 

we observe an upward trend that may be ascribed to the economic recovery of developed 

countries following the crisis and then a sharp fall that may be driven by the boom of shale 

gas/oil fracturing. The summary statistics of the variables is documented in Table 1.  

[Insert Table 1 here] 

 

3.2 Evidence from the Cointegration Test 

Before we determine whether all series are cointegrated, we first examine the integrated order 

of all the variables by utilizing the unit-root tests. Specifically, we perform the Agumented 

Dicky-Fuller (ADF) unit root test (Dicky and Fuller, 1979) and the Phillips-Perron (PP) unit 

root test (Phillips and Perron, 1988). We first apply the tests to the levels of the series, and then 

to their first differences. The results are reported in Table 2. The second and the third columns 

show the ADF test results. The lag lengths (reported in parentheses) are chosen based on the 

Akaike information criterion (AIC). As documented in the second column where the tests are 

applied to the levels of series, the null hypothesis of a unit root cannot be rejected for any of 

the series. However, when we re-apply the test to the first differences, the null hypothesis is 

rejected at the 1% level for all series. Thereby, we find evidence that all variables are integrated 

of order one. The PP test results, documented in the last two columns, tell the same story. We 

set the bandwidths according to the Bartlett Kernel, which are reported in parenthesis. Again, 

we cannot statistically reject the null hypothesis of a unit root for any of the variables when 

applying the test to levels, whereas we are able to do so at 1% level when applying the test to 

first differences. Given that all the variables are found to be cointegrated of order one, we then 

test for the cointegrating relationship between them. 

[Insert Tables 2 and 3 here] 

 

We first use Johansen (1988) techniques to test for pairwise cointegration relations between 4 

crude oil prices and the GPR index. The tests for the number of cointegrating vectors are based 

on maximum eigenvalue and trace eigenvalue statistics of the stochastic matrix in the 
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multivariate framework. The results are shown in Table 3. One can see that both tests suggest 

the existence of one cointegrating vector: the null hypothesis of no cointegration for all 

equations can be rejected at 1% significance level, whereas the null of at most 1 cointegration 

vector cannot be statistically rejected. In Table 4, we provide the empirical results when we 

include global economic outlook data into each of the above pairwise cointegration tests. For 

both tests, the null of no cointegration is rejected in all equations at 1% significance level. 

However, we are not able to reject the existence of at most 1 cointegration relation or at most 

2 cointegration relation at even 10% significance level. Hence, we find evidence that 

cointegration exist between oil prices, GPR index and world economic outlook. 

[Insert Tables 4 and 5 here] 

 

We further check for robustness by applying the Engle-Granger Cointegration test. We choose 

the lag order to be zero in accordance with automatic lags specification based on Akaike 

criterion. No matter which pairwise cointegration relationship (between a specific oil price and 

the GPR index) is investigated, and no matter whether the world economic outlook is included 

or not, the null hypothesis of no cointegration is rejected at least at 5% significance level. 

Therefore, we again confirm that the oil prices and the GPR index are cointegrated in the long 

run. 

 

3.1 Empirical Results of the Wavelet Coherence and Phase Difference 

Although traditional cointegration tests provide evidence of co-movement between oil prices 

and the GPR index, yet, as discussed earlier, we are dissatisfied with the fact that only one 

cointegration is discovered to proxy the co-movement in the historical interactive process of 

the two variables. Next, we resort to the wavelet analysis to investigate the dynamic interaction 

between oil prices and geopolitical risks in both frequency and time domains. 

[Insert Figures 3 to 6 here] 

 

Figure 3-6 illustrate the wavelet coherencies and phase-differences between the GPR index and 

each of the crude oil prices, respectively. In each figure, the left two graphs provide the results 

where the world economic outlook is not controlled for; instead, the right two graphs document 

results of the partial wavelet coherency and partial phase difference analysis as shown in 

equation (9) and (10), where the world economic outlook is controlled for. In each figure, the 

upper two graphs document the wavelet coherency results, while the lower two graphs 

document the phase difference results. In the wavelet coherency analysis graphs, the cone of 

influence is shown with a black line that looks like “region”, indicating the contour is 

significant at the 5% significance level. The y-axis refers to the frequencies, which is converted 

to time units (years) for ease of interpretation; the x-axis refers to the time (1985-2016). The 

color of the graph indicates the strength of coherency at each frequency, ranging from blue 

(low coherency) to red (high coherency). For phase-difference analysis graphs, the (partial) 

phase difference between the two series is shown in the y-axis, while time is shown in the x-

axis. 

 

Since the WTI oil price is mostly commonly used oil price index, we start with the WTI-GPR 

pair for our wavelet analysis. From the wavelet coherency results, we observe very interesting 

results. Different from traditional cointegration tests, wavelet coherency analysis uncovers 

significant dynamic correlations between the WTI oil prices and the GPR index in the time-

frequency domain. To be specific, first, one can easily find that almost all area corresponding 
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to low frequencies is blue, implying that the degree of co-movement between the WTI oil prices 

and the geopolitical risk is weak for low frequencies in almost the entire sample period. The 

only exception is the period of 2010-2016. That is, the degree of long-run co-movement 

between the two variables is not significantly strong until 2010. One potential explanation of 

none existence of long-run correlation between geopolitical risk and oil prices could be that 

major oil-importing superpowers such as the U.S. have incentives to intervene any tensions or 

conflicts in oil-exporting regions to prevent uncertainty or disruption of oil production (De 

Soysa, Gartzke and Lie, 2011). Second, contrarily, for high frequencies, specifically 

fluctuations with duration less than 1.5 years, the WTI oil price and the GPR index exhibits a 

strong relationship for the entire sample period. The close short-term dependence and yet loose 

long-run correlations between the two series during majority of the time imply that geopolitical 

risk is an important factor to be taken into consideration for short-term investors (e.g., 

arbitragers and speculators) in the oil market, whereas it may be less relevant for long-term 

investors (e.g., oil producers and policy makers). However, since the co-movement varies over 

time, we can see that the dynamic pattern changes greatly after 2010 when the WTI oil prices 

move significantly more closely with geopolitical risks at low frequencies too. Thus, the 

geopolitical risk information may deserve more attention from long-term investors in the 

current decade and future. 

 

Since the co-movement mostly exists in the short run, we perform the phase difference analysis 

in the high frequency. Specifically, we choose the 1-4 year frequency band. Our evidence 

shows that the causal relationship between the WTI oil price and geopolitical risk varies across 

different time periods. During 1985-2000 and 2010-2016, given that the phase difference lies 

in between (0,𝜋/2), we can tell that the two series move in phase (i.e., positively comove), with 

geopolitical risk leading the oil prices. This implies that an increase in the geopolitical risk 

leads to a rise in the WTI oil prices in the short run. During 2000-2010, the phase difference is 

marginally above 𝜋/2, providing some evidence that the GPR index and the WTI oil prices 

moves out of phase during this period, with the WTI oil price leading the GPR index. Since the 

evidence is rather weak, we argue that the short-run causality between the two variables mainly 

runs from the GPR index to the WTI oil prices and they move in phase, at least during our 

sample.   

 

The outlook of world economy can significantly influence the oil prices (Aguiar-Conraria and 

Soares, 2011; Naccache, 2011; Wang and Sun, 2017). This implies that the above results 

estimated by wavelet coherency and phase difference without removing the simultaneous 

effects of economic growth on oil prices may suffer from some inaccuracy. Accordingly, we 

further estimate the partial wavelet coherency and partial phase difference with world 

economic outlook, proxied by the overall GDP growth forecast of the global economy, as a 

control variable to reveal the true relationship between the oil prices and geopolitical risks. 

Figure 3.3 and 3.4 report the findings. For partial wavelet coherency analysis, we find stronger 

evidence of co-movement between the WTI oil prices and the GPR index for high frequencies 

(mostly in the frequency band smaller than 2 years) during the entire sample period. Moreover, 

for the most recent period of 2010-2016, the degree of correlation between the two variables 

are even higher for all frequencies including the lowest ones. This again presents evidence of 

a possible structural break in the relationship. As for the partial phase difference analysis, we 

observe dynamic lead-lag relationship that slightly differs from previous results. The partial 

phase difference lies between (0, 𝜋/2)  over even longer periods of the sample. The periods 

with partial phase difference marginally above 𝜋/2 shrinks to 2003-2008. This further confirms 

the finding that in most time the two series moves in phase and the geopolitical risk positively 
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contributes to the WTI oil price. To check for the robustness of our findings, we perform the 

above analysis for interactions between geopolitical risk and other 3 oil prices (Brent, Dubai 

and Nigerian), the results of which are shown in Figure 4-6. We can see no matter whether the 

world economic outlook data is accounted for or not, the wavelet coherency analysis all 

provides very similar results as what we have interpreted in Figure 3. Accordingly, we 

demonstrate that our findings that the co-movement between geopolitical risk and oil prices 

mainly exist in the short run are robust to the choices of the oil price index utilized.  

 

As for the (partial) phase difference analyses, we continue to look into the high frequency (the 

frequency band of 1-4 years). However, we observe different patterns across different oil price 

indexes. Although the GPR-Brent pair exhibits very similar pattern in the dynamic causality 

between geopolitical risk and oil prices as that shown in Figure 3, the GPR-Dubai and GPR-

Nigerian pairs share a common pattern that varies substantially from the GPR-WTI and GPR-

Brent pairs. For GPR-Dubai and GPR-Nigerian pairs (shown in Figure 5 and 6), instead of a 

relatively stable causality relationship in previous results, we find that the causality varies 

across different time periods. During 1985-1992, given that the phase difference lies in between 

(0,𝜋/2), we can tell that the two series move in phase with geopolitical risk leading the oil 

prices. During 1992-1995 and 2005-2010, we also observe positive co-movement between the 

two, though the causal link runs from the oil price to geopolitical risk. On the contrary, in the 

time window of 1995-2005 and 2010-2016, the two series move out of phase with geopolitical 

risk taking the lead.  

 

We next turn to the partial phase difference analyses when world economic outlook is taken 

into account for the GPR-Dubai and GPR-Nigerian pairs. For both pairs, the partial phase 

difference lies between (-𝜋/2, 0) from the beginning of the sample till around 2008, suggesting 

that in most time the two series moves in phase and the WTI oil prices leads the GPR index. 

This is in line with the intuition that oil price spikes, which facilitates various channels through 

which “oil recourse curse” occur (as discussed in earlier section), increase likelihood of 

geopolitical tensions or even actual conflicts. Different from the findings when world economic 

outlook is not controlled for, the only period when the phase difference falls in the range of (-

𝜋 , - 𝜋 /2) is 2008-2016, providing suggestive evidence that geopolitical risk negatively 

contributes to oil prices during the time window. We hold caution for such interpretation as the 

innovation of shale oil extraction made oil prices experience a significant decline after 2010. 

This could dominate the positive co-movement between geopolitical risk and oil prices. Thus, 

we choose to interpret our results as demonstrating a positive causality running from 

Dubai/Nigerian oil prices to geopolitical risks. 

 

In sum, we find robust evidence that the co-movement and causality between the oil prices and 

geopolitical risk varies across frequencies and evolves over time. Interestingly, we also find 

that the dynamic relationship between the two also exhibits different patterns for different oil 

markets. Overall, we demonstrate the bi-directional causal relationship between the oil prices 

and the geopolitical risk indeed exists: in majority of the sample period, for the WTI and Brent 

index, the causality runs from geopolitical risk to oil prices, while for the Dubai and Nigerian 

index, the causality runs from the opposite direction. Additionally, we also observe structural 

breaks in the data and the causal relationship is dynamic across time, which are all missed in 

conventional time-domain cointegration tests. Our results are to some extent consistent with 

the Noguera-Santaella (2016)’s findings, and to some extent not: we both find that prior to 

2000, geopolitical events positively affected oil prices; however, Noguera-Santaella (2016) 
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fails to identify impacts of geopolitical events on oil prices afterwards, whereas we continue to 

observe significant causality between the two. This can be largely due to the distinct dataset 

and empirical methodology utilized in our paper. 

 

Our findings provide critical information for not only participants in the oil market but also 

policy makers. First, we show that the oil prices and geopolitical risk correlate with each other 

mainly at higher frequencies (the ≤ 2-year frequency band). Moreover, our results demonstrate 

that for the WTI and Brent oil prices, an increase in geopolitical risk result in a rise in oil prices 

in the short run. This implies that investors with a short-term horizon should pay special 

attention to the information of geopolitical risks in order to allocate their assets more 

effectively. Market performance forecasts based on variations of geopolitical risk should focus 

on shorter time horizons so as to enhance the forecasting accuracy. In terms of investment 

strategy, short-term investors should consider purchasing more assets in front of an increase in 

geopolitical risk. For policy makers in major oil-importing countries, our results again highlight 

the importance of reconciling geopolitical tensions or conflicts for maintaining energy security. 

Second, for the Dubai and Nigerian market, we identify a structural break at 2010 after which 

the geopolitical risk and oil prices are also negatively correlated at low frequencies (i.e., long 

term). This implies that in the current decades and possibly in the future, investors with a long-

term horizon in the two markets should consider reducing their assets or at least be cautious 

about purchasing extra assets, when geopolitical risk becomes more serious. This also implies 

room for hedging between long-term and short-term contracts in these two markets. However, 

we hold such recommendation with prudence as the significant oil price decline due to the shale 

extraction boom may have driven the results. Future studies could revisit this question when 

updated data with longer horizon is available. Third, our study provides evidence that (for the 

Dubai and Nigerian spot markets) fluctuations of oil prices could positively contribute to the 

geopolitical risks. We thus urge policy makers to focus on oil price variations as a trigger for 

geopolitical tension and conflicts.  

 

 

4. Concluding Remarks 

Although each has been studied thoroughly as a separate issue, the interaction between 

geopolitical risk and oil prices remains unaddressed in the previous literature. In this study, we 

attempt to investigate the dynamic relationship between oil prices and geopolitical risk in both 

time- and frequency- domains by utilizing a novel method: wavelet analysis. Its main 

advantage relative to traditional time-domain techniques is that time-domain techniques lose 

sight of the frequency domain, which may result in the failure to capture useful and important 

information. Previous researchers have found that the relations between oil prices and various 

macroeconomic variables may exist at different frequencies (Aguiar-Conraria and Soares, 

2011; Naccache, 2011; Benhmad, 2012; Tiwari et al., 2013). 

 

We take advantage of a new data set to properly and comprehensively measure geopolitical 

risk, constructed by Caldara and Iacoviello (2017). The data is a normalized index based on 

the occurrence of words regarding geopolitical tensions and conflicts in leading international 

newspapers. The empirical results show that the correlation between geopolitical risk and oil 

prices is indeed time- and frequency-varying. Generally, we find that the two series have strong 

degree of co-movement in high frequencies (short-term fluctuations), whereas evidence of co-

movement in low frequencies (long-term fluctuations) only exists during 2010-2016. Our 



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

33 

 

results also manifest dynamic causality between the two series across time. Overall, 

geopolitical risk positively contributes to oil prices for WTI and Nigerian index, while oil prices 

positively contribute to geopolitical risks for Brent and Dubai index.  

 

Overall, we hope our empirical results, based on multi-frequency analysis, can provide more 

useful information to investors and oil producers for investment strategies. Our findings of 

short-term co-movement between geopolitical risk and oil prices imply that investors with a 

short-term horizon should particularly exploit the geopolitical risk information to form better 

strategies. These findings are also helpful for policy makers to incorporate the dynamics of the 

causality relationships between oil prices and geopolitical risks in their policy-making process. 
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Figure 1. Plots of the Economic Outlook and GPR. 
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Figure 2. Plots of the Crude Oil Prices. 
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Figure 3. Wavelet Analysis: GPR Index vs. WTI Oil Prices  

 

 
Note: the upper two graphs show the results of wavelet coherency analysis, while the bottom 

two graphs present the phase-difference correlations. The left two graphs document the results 

where the economic outlook is not controlled for. The right two graphs document the results 

where the economic outlook is controlled for. 

 

 

Figure 4. Wavelet Analysis: GPR Index vs. Brent Oil Prices 

 

 

 
Note: the upper two graphs show the results of wavelet coherency analysis, while the bottom 

two graphs present the phase-difference correlations. The left two graphs document the results 

where the economic outlook is not controlled for. The right two graphs document the results 

where the economic outlook is controlled for. 
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Figure 5. Wavelet Analysis: GPR Index vs. Dubai Oil Prices 

 

 
Note: the upper two graphs show the results of wavelet coherency analysis, while the bottom 

two graphs present the phase-difference correlations. The left two graphs document the results 

where the economic outlook is not controlled for. The right two graphs document the results 

where the economic outlook is controlled for. 

 

 

Figure 6. Wavelet Analysis: GPR Index vs. Nigerian Oil Prices 

 

 

 
Note: the upper two graphs show the results of wavelet coherency analysis, while the bottom 

two graphs present the phase-difference correlations. The left two graphs document the results 

where the economic outlook is not controlled for. The right two graphs document the results 

where the economic outlook is controlled for. 
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Table 1. Data Descriptive 

 

Variable N Mean S.D Min Max Median 

Brent 32 43.10 32.80 12.72 111.7 26.29 

Dubai 32 40.90 32.23 12.21 109.1 24.97 

Nigerian  32 43.97 33.86 12.62 114.2 26.40 

West Texas  32 42.46 29.31 14.39 100.1 27.07 

GPR 32 81.96 45.48 32.12 224.8 72.97 

Economic Outlook 32 3.650 1.170 -0.540 5.540 3.660 
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Table 2. Unit Root Tests. 

 

Variable ADF PP 

 Level First difference Level First difference 

Brent -1.782 (0) -4.934 (0)*** -2.050 (3) -4.935(3) *** 

Dubai -1.765 (0) -4.903 (0)*** -2.060 (3) -4.912(3) *** 

Nigerian -1.784 (0) -4.950 (0) *** -2.046 (3) -4.940(2) *** 

West Texas  -1.967 (0) -5.878 (0)*** -2.060 (2) -5.883(2) *** 

GPR -1.297 (0) -5.441 (1)*** -1.022 (4) -9.796(5) *** 

Economic Outlook -0.593 (2) -6.805 (1)*** -0.938 (6) -9.968(3) *** 

Notes: The null hypothesis of ADF tests is a unit root. The numbers in parentheses are the lag 

order and lag parameters are selected on the basis of the AIC. The null hypothesis of PP tests 

is a unit root. The numbers in parentheses are the bandwidths are selected on the basis of the 

Bartlett Kernel. The *** indicates significance at the 1% level.  

  



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

43 

 

Table 3. Johansen’s Cointegration Test: without Economics Outlook 

 

Null hypothesis Maximum eigenvalue 

statistics 

Trace eigenvalue statistics 

No. of CE(s) Cointegration test for Brent and GPR 

None 18.520* 26.157** 

 (0.066) (0.046) 

At most 1 7.636 7.636 

 (0.282) (0.282) 

 Cointegration test for Dubai and GPR 

None 13.429** 13.432** 

 (0.020) (0.032) 

At most 1 0.003 0.003 

 (0.964) (0.964) 

 Cointegration test for Nigerian and GPR 

None 10.598* 10.600* 

 (0.064) (0.095) 

At most 1 0.003 0.003 

 (0.961) (0.961) 

 Cointegration test for WTI and GPR 

None 10.550* 10.552* 

 (0.065) (0.097) 

At most 1 0.001 0.001 

 (0.975) (0.975) 

Notes: ***, ** and * denote rejection at1%, 5% and 10% levels. P-values are in parenthesis. 
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Table 4. Johansen’s Cointegration Test: with Economics Outlook 

 

Null hypothesis Maximum eigenvalue statistics Trace eigenvalue statistics 
No. of CE(s) Cointegration test for Brent , GPR and Economic Outlook 
None 32.613*** 45.505*** 
 (0.000) (0.000) 
At most 1 10.860 12.892 
 (0.161) (0.119) 
At most 2 2.032 2.032 
 (0.154) (0.154) 
 Cointegration test for Dubai , GPR and Economic Outlook 
None 32.088*** 45.068*** 
 (0.001) (0.000) 
At most 1 11.016 12.979 
 (0.153) (0.116) 
At most 2 1.963 1.963 
 (0.161) (0.161) 
 Cointegration test for Nigerian , GPR and Economic Outlook 
None 33.206*** 46.127*** 
 (0.001) (0.000) 
At most 1 10.840 12.922 
 (0.162) (0.118) 
At most 2 2.081 2.081 
 (0.149) (0.149) 
 Cointegration test for WTI, GPR and Economic Outlook 
None 31.962*** 44.842*** 
 (0.001) (0.001) 
At most 1 10.756 12.879 
 (0.167) (0.119) 
At most 2 2.124 2.124 
 (0.145) (0.145) 

Notes: ***, ** and * denote rejection at1%, 5% and 10% levels. P-values are in parenthesis. 
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Table 5.  Engle-Granger Cointegration Test 

 

Null hypothesis:series are not cointegrated 

 Z-statistic Lag order 

Cointegration test for Brent and GPR -17.186**(0.049) 0 

Cointegration test for Dubai and GPR -17.219**(0.049) 0 

Cointegration test for Nigerian and 

GPR 
-17.194**(0.049) 0 

Cointegration test for West Texas and 

GPR 
-17.169**(0.049) 0 

Cointegration test for Brent , GPR and 

Economic Outlook 
-30.088***(0.002) 0 

Cointegration test for Dubai , GPR 

and Economic Outlook 
-30.148***(0.002) 0 

Cointegration test for Nigerian , GPR 

and Economic Outlook 
-30.099**(0.002) 0 

Cointegration test for West Texas, 

GPR and Economic Outlook 
-29.987***(0.002) 0 

Notes: *** and** denote rejection at1% and 5% levels. P-values are in parenthesis. 
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Abstract 

 

This paper attempts to empirically establish the impact of terrorism on the most commonly 

traded commodity, Crude oil. The study covers all major global terrorist events for a long time 

period of 1991-2016 to institute any causality between terrorism and oil prices. The results 

indicate that the oil prices get negatively affected by the terrorist events. Using S&P global oil 

index and US oil fund data, the results further confirm the relationship between the two. The 

study also found that the impact of a terrorist attack in a developed country has a stronger 

negative impact on the global oil prices as compared to an attack in a developing and 

underdeveloped country. Additionally, the attack in a net oil exporter country tend to have a 

stronger impact on oil prices compared to a net oil importer nation. The findings of the paper 

are instrumental to commodity investors and fund managers for portfolio diversification 

strategies against terrorism risk. The outcome of the study will also provide an insight to 

supervising authorities to be more efficient in absorbing exogenous geopolitical risk.  
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I. Introduction 

International terrorism is a complex geopolitical issue that threatens to undermine the financial 

market and economy worldwide. Unprovoked attacks upon civilians and infrastructure carried 

out by regional and international terrorist groups create a sense of fear and uneasiness in the 

mind of general public which spillover to financial market. Terrorist activities has a tendency 

to send shock waves through both domestic and foreign markets by creating a state of insecurity 

within the marketplace, which can lead to investor apprehension and many unforeseen financial 

consequences. The impact that an act of terror has on the financial market and commodities 

varies depending on the type of attack, locale, extent of casualty and time in which it was 

committed. Some terrorist activities can cause only a national or regional disturbance spiking 

volatility at local level, while others may cause economic repercussions through the entire 

financial system. No matter the size and scope of the act, it brings uncertainty to the 

marketplace and ensures enhanced volatility facing a wide variety of asset classes including 

commodity market. 

 

A lot of research on terrorism has been done in the fields of sociology and political science but 

with respect to economics and finance, terrorism has not received much attention from 

researchers. Even within the financial sector most of the studies has been concentrated on the 

stock market reaction to terrorist activities (inter alia:  Arin, Ciferri, and Spagnolo 2008; 

Brounen and Derwall 2010; Charles and Darne 2006; Chen and Siems 2004; Chesney, 

Reshetar, and Karaman 2011; Drakos, 2010; Eldor and Melnick, 2004; Kollias, Papadamou 

and Stagiannis, 2011; Kollias, Papadamou and Arvanitis, 2013; Nikkinen and Vahamaa, 2010). 

 

If we focus on the implications of terrorist activities on the most traded commodity, crude oil 

we are unable to find any significant empirical research. Guo & Kleisen (2005) using daily 

prices of crude oil futures traded on the New York Mercantile Exchange (NYMEX) over the 

period 1984-2004 found out that crude oil price volatility is mainly driven by exogenous 

(random) events such as significant terrorist attacks and conflicts in the Middle East. Plante 

and Traum (2012) noted that oil price index rose due to terrorist attacks and political upheaval 

in oil producing countries. In a recent paper, Sartori (2016) noted that growing terrorist 

activities in major oil producing country Libya is affecting oil production and distribution 

giving a rise in oil price volatility. 

 

Even though there is no direct evidence to show that terrorism has a direct impact on oil prices, 

one way to argue this correlation is that oil producing countries might be favored for their 

terrorist activities to shock the national or world economy at large. Luft and Korin (2004) 

highlighted that terrorist might have an incentive to attack oil producing countries to damage 

their target countries’ geopolitical interest.  To substantiate this argument, we can find that in 

2012, there were at least thirty-five terror attacks that targeted oil or gas pipelines, tankers and 

refineries (Taylor, 2012). The closest of evidence which showed the impact of terrorism on oil 

price can be tracked back to series of terrorist attacks in Saudi Arabia in May 2004, caused oil 

prices to rise to the highest point since 1990 ( Luft and Korin, 2004). Pirog (2005) also 

acknowledged that the fear of terrorism and war are quickly reflected in the current oil price as 

well as future markets like NYMEX. 

 

In terms of the locale of the terrorist attack and its impact of oil price can be explained from 

the argument that oil producing countries (mostly oil exporting countries) have tactical values 

to developed countries such as importance of oil rich Saudi Arabia to the United States. In 

terrorism literature in can be established from research of Pape (2003) and Savun & Philips 
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(2009) that developed countries are more likely to become terrorist targets because of their 

active foreign involvements. Oil producing countries may be more likely targets of terrorist 

attacks because targeting strategic assets of developed countries in oil exporting countries 

might be more cost effective for terrorist. 

 

Thus it can be seen from above discussion that there has been no single study which has 

empirically established how terrorism will affect oil prices and its volatility. The current study 

is an attempt to fill in this research gap. The study will make use of daily oil prices and will be 

tested against all the major terrorist attacks since 1991. We will also try to establish how the 

terrorist attack with affect one and two-month oil futures. In contrast to impact studies which 

often employ only event-study methodology, in this paper we investigate the impact of 

terrorism using filtered generalized autoregressive conditionally heteroscedastic (GARCH) 

approach. Another contribution of this paper is that most of the literature on commodity price 

is explained from macroeconomic shocks but not from unexpected event such as terrorist 

attacks.  

 

The findings of our empirical investigation are useful for investors, fund managers, insurance 

agencies, banks and government. This study is among the first one to give insights into possible 

portfolio diversification strategies in commodities market with respect to the risk of terrorism. 

We organize the remainder of the paper as follows. In the next section, we discuss the data set. 

The main findings are presented in Section III, and the final section summarizes the key 

messages emerging from our paper. 

 

II. Data and methodology: 

We sourced data from two sources to compile the final dataset, namely U.S. Energy 

Information Administration (EIA) and Global Terrorism Database (GTD). The daily oil prices 

(WTI spot) are sourced from EIA whereas the terrorism related data is sourced from GTD. We 

compile daily WTI prices from 1/11/1991 to 9/8/2016. The timespan is chosen to match the oil 

data with terrorism data. The terrorism data starts from the attack that took place in France, 

Spain and Greece and includes the recent attack in Germany. We further segregate terrorist 

attacks (TER) at regional level, developing vs developed, and also on the basis of oil-importing 

and oil exporting countries. The segregation is based on World Bank classifications. Finally, 

we also limit our sample to most developed countries. 

Once, we compile the dataset, we run following estimations: 

𝑂𝐼𝐿𝑡 =  𝛼 +  𝛽1 𝑇𝐸𝑅𝑡 + 𝛽2 𝑂𝐼𝐿𝑡−1 + 𝛽3 𝑂𝐼𝐿𝑡−1 +  𝑂𝐼𝐿𝑡
2 +  𝜀𝑡 

 

The model is estimated based on GARCH (1,1) with t distribution. The OIL is oil returns, 

estimated as log WTI – log WTI(-1) which is plotted in Figure 1. Terrorist attacks (TER) is 

measured by several variables starting with attack day. The attack day variable takes the value 

of 1 in case TER occur, otherwise zero otherwise. We also use other measures of TER such as 

number of attacks (in a day), number of casualties, number of injured, property destroyed (1 if 

yes zero otherwise), number of properties destroyed. We have more than 50000 observations 

spanning over 191 countries. 

[Insert Figure 1 here] 

Descriptive statistics: 
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The OIL is plotted in Figure 1 which displays volatility and volatility clustering. The 

descriptive statistics is provided in Table 1. The full sample indicates that there are total of 

51061 attack days whereas the total number of attacks are 108478. The statistics on the number 

of killings and injuries are 301138 and 433310 respectively. The attacks that involve 

destruction of property are 33086 whereas the total number of property destroyed are 56874.  

[Insert Table 1 here] 

Further statistics reveal that the most number of these attacks took place in oil importing and 

the developing countries. Similarly, the total number of casualties and injuries from attacks is 

observed in oil importing and developing economies as compared oil exporting and developed 

economies. The further segregation of data based on region reveals that Middle East and North 

Africa (MENA) and South Asia leads in number of attack days followed by the Sub Sahara 

Africa (SSA) and South East Asia (SEA). Similarly, the total number of attacks, casualties and 

injuries reveal the similar pattern. Western Europe witnessed the highest number of attack days 

and attacks among the western countries. The least number of attack days are witnessed by 

Australasia & Oceania (115), East Asia (324) and Central Asia (411). The Pearson correlation 

coefficients are presented in Table 2. The coefficients reveal that all the TER variables, except 

number of casualties, is significantly correlated with the OIL. Furthermore, the attack days, 

property destroyed and the number of property destroyed is positively related with the OIL 

whereas the other variables such as number of attacks and the number of injuries is negatively 

related with OIL. 

[Insert Table 2 here] 

III. Findings 

The effect of TER on OIL based on GARCH (1,1) with t distribution is provided in Table 3. 

The results based on full sample indicate that TER negatively affect the OIL. The results are 

consistent across all the proxies except number of casualties and injuries. Further segregation 

of data reveals that terror attacks in oil importing countries are almost similar to full results. 

However, in case of oil exporting countries, the number of attacks, number of casualties and 

injuries exert positive pressure on OIL.  

 

[Insert Table 3 here] 

We further segregate the results based on per capita income. The classification is based on 

World Bank. The impact of TER on OIL may be contingent on the importance of country as 

the TER in developing economies may not have similar affect as compared to developed or 

most developed economy. In other words, we expect TER in developing economy to have no 

or weak effects on the OIL as compared to developed or most developed nations. The results 

are reported in Table 4. Although the impact of TER are negative in case of developing 

economies, the magnitude is lower as compared to developed/most developed. The important 

point to note here is that the number of attack days and the total number of attacks in developing 

economies are 46500 and 101934 respectively as compared to developed economies where the 

total number of attack days and number of attacks are 4481 and 6544 respectively.  

 

[Insert Table 4 here] 

The sample is further divided based on region. The sample segregation is based on the TER in 

the region (see Table 5). These regions have witnessed significant TER over the sample period. 

In case of Eastern Europe (EE), almost all the variables are insignificant indicating that TER 

in EE do not have any effect on the OIL. The results based on other regions reveal that the TER 
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exerts negative and significant effect on the OIL. On average, it can be argued that the TER 

negatively affects the OIL. 

 

Robustness: 

Finally, we test the relationship by replacing oil spot prices by 1 and 2 month futures. Testing 

the relationship between oil futures (FUTURES) and TER provides a natural framework to test 

the lagged effect of TER. If there is lagged effect of TER on OIL, it should be reflected in 

FUTURES. The results are provided in Table 6. The findings indicate that, in almost all the 

cases, the TER negatively affects the FUTURES (1 AND 2). These findings indicate that the 

TER not only effects the oil sport prices but also effects the futures. 

 

 

IV. Conclusion 

In this study, we examine the effects of terrorist attacks on crude oil price both in the spot 

market as well as in the future market. The results indicate that the oil prices get negatively 

affected by the terrorist events. Using S&P global oil index and US oil fund data, the results 

further confirm the relationship between the two. The study also found that the impact of a 

terrorist attack in a developed country has a stronger negative impact on the global oil prices 

as compared to an attack in a developing and underdeveloped country. Additionally, the attack 

in a net oil exporter country tend to have a stronger impact on oil prices compared to a net oil 

importer nation. The results of our study suggest several diversification strategies against 

terrorism risk in the commodity market. If concerned about this risk, investors should hold 

assets that have little or no negative sensitivity to this risk which is still an are3a to explore in 

the future research. 
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Figure 1: Daily Oil returns 
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Table 1: Descriptive statistics 

Region 
Attack  

days 

No. of 

attack 

No. of 

casualties 

No. of 

injuries 

Property  

destroyed 

No. of 

Property  

destroyed 

Full sample       
Mean 0.909 1.931 5.457 8.029 0.589 1.012 

SD 0.288 2.550 22.524 75.521 0.492 1.767 

Total 51061 108478 301138 433310 33086 56874 

Oil exporting       
Mean 0.903 1.766 5.660 9.474 0.572 0.969 

SD 0.297 2.189 17.343 35.779 0.495 1.618 

Total 10332 20221 64089 104648 6552 11094 

Oil importing     
 

 
Mean 0.910 1.972 5.405 7.657 0.593 1.023 

SD 0.286 2.633 23.678 82.711 0.491 1.803 

Total 40729 88257 237049 328662 26534 45780 

Developing     
 

 
Mean 0.916 2.004 5.929 8.233 0.577 1.009 

SD 0.277 2.606 19.387 32.575 0.494 1.763 

Total 46580 101934 295786 401065 29338 51324 

Developed     
 

 
Mean 0.839 1.226 1.011 6.137 0.702 1.040 

SD 0.367 1.795 41.525 220.795 0.457 1.801 

Total 4481 6544 5352 32245 3748 5550 

Australasia & 

Oceania       
Mean 0.833 0.957 0.574 0.956 0.725 0.848 

SD 0.374 0.603 2.064 3.423 0.448 0.672 

Total 115 132 78 129 100 117 

Central America       
Mean 0.912 1.566 1.407 2.082 0.665 1.245 

SD 0.284 2.058 5.352 5.852 0.472 2.042 

Total 879 1510 1354 1997 641 1200 

Central Asia       
Mean 0.871 1.015 2.122 4.303 0.523 0.627 

SD 0.336 0.650 5.602 38.045 0.500 0.760 

Total 411 479 993 2001 247 296 

East Asia       
Mean 0.885 1.221 2.961 25.057 0.596 0.913 

SD 0.319 2.591 12.698 296.508 0.491 2.647 

Total 324 447 1060 8820 218 334 

Eastern Europe       
Mean 0.879 1.247 2.457 4.031 0.573 0.752 

SD 0.327 1.151 12.896 20.040 0.495 0.961 

Total 2619 3718 7203 11649 1709 2242 
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MENA       
Mean 0.918 2.432 7.840 12.889 0.577 1.069 

SD 0.275 3.461 25.009 37.113 0.494 1.962 

Total 14111 37391 118336 191071 8866 16429 

North America       
Mean 0.866 1.053 4.436 18.894 0.653 0.790 

SD 0.341 0.785 99.228 491.744 0.476 0.828 

Total 800 973 4068 17250 603 730 

South America       
Mean 0.887 1.645 2.914 2.688 0.645 1.230 

SD 0.317 2.492 9.773 10.552 0.478 2.451 

Total 3320 6159 10804 9787 2417 4606 

South Asia       
Mean 0.938 2.381 6.042 9.103 0.624 1.197 

SD 0.241 2.523 13.491 25.690 0.484 1.766 

Total 12638 32072 80836 119681 8406 16127 

Southeast Asia       
Mean 0.907 1.543 1.919 3.871 0.522 0.796 

SD 0.290 1.604 5.220 12.843 0.500 1.429 

Total 4856 8257 10110 20158 2796 4262 

Sub-Saharan Africa       
Mean 0.914 1.459 8.356 5.817 0.508 0.726 

SD 0.280 1.416 26.719 50.710 0.500 1.205 

Total 7453 11894 64716 42202 4144 5921 

Western Europe       
Mean 0.831 1.281 0.374 2.049 0.691 1.084 

SD 0.375 1.979 4.364 32.758 0.462 1.981 

Total 3535 5446 1580 8565 2939 4610 
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Table 2: Pearson correlation 

 

  

   OIL 
Attack 

days 

No. of 

attack 

No. of 

casualtie

s 

No. of 

injurie

s 

Propert

y  

destroye

d 

No. of 

Propert

y  

destroye

d 

OIL 1       

Attack days 0.0283* 1     

 

No. of attack  -0.0449* 0.2400* 1    

 

No. of casualties 0.0023 0.0776* 
0.2518

* 
1   

 

No. of injuries -0.0176* 0.0345* 
0.1152

* 
0.6405* 1  

 

Property  

destroyed 
0.0623* 0.3793* 

0.2693

* 
0.0773* 

0.0483

* 
1 

 

No. of Property  

destroyed 
 0.0229* 0.1816* 

0.7846

* 
0.1406* 

0.0717

* 
0.4787* 1 
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Table 3: Oil (spot) and terrorist attacks (Oil importing vs Oil exporting) 

 

 (1) (2) (3) (4) (5) (6) 

Dependent 

variable: Oil 

returns 

Attack 

days 

No. of 

attack 

No. of 

casualties 

No.  

of injuries 

Property 

destroye

d 

No. of 

property 

destroyed 

 

Full sample -

0.0684*** 

-

0.00939*** 

0.0000805 0.0000903 -0.134*** -0.0183*** 

 (-4.27) (-3.91) (0.47) (1.20) (-14.20) (-6.21) 

       

Oil 

importing 

-

0.0725*** 

0.00704** -0.000144 0.0000245 -0.147*** -0.0189*** 

 (-4.07) (2.67) (-0.92) (0.71) (-13.69) (-5.51) 

Oil 

exporting 

-0.0837**  

(-2.12) 

0.0159** 

(2.55) 

0.00180*** 

(3.57) 

0.00147*** 

(4.00) 

-

0.0886***  

(-4.38) 

-0.0605** 

 (-2.06) 

       

t statistics in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 4: Oil (spot) and terrorist attacks 

 

 (1) (2) (3) (4) (5) (6) 

Dependent 

variable: Oil 

returns 

Attack 

days 

No. of 

attack 

No. of 

casualties 

No.  

of injuries 

Property 

destroye

d 

No. of 

property 

destroyed 

 

Developing -0.0480** 0.0110*** -0.000080 0.000586* -0.119*** -0.0156*** 

 (-2.76) (4.61) (-0.35) (2.19) (-11.74) (-5.04) 

Developed -0.298***  

(-6.95) 

-0.0283***  

(-3.43) 

0.0000191 

(0.03) 

-0.0000069  

(-0.36) 

-0.145***  

(-4.32) 

-0.0232**  

 (-2.95) 

       

Most 

developed 

-0.325***  

(-6.14) 

-0.0261**   

(-2.99) 

-0.000087  

(-0.10) 

-0.0000112  

(-0.49) 

-0.177***  

(-4.54) 

-0.0226**   

(-2.62) 

       

t statistics in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 5: Oil (spot) and terrorist attacks (Regional results) 

 

 (1) (2) (3) (4) (5) (6) 

Dependent 

variable: Oil 

returns 

Attack 

days 

No. of 

attack 

No. of 

casualties 

No.  

of injuries 

Propert

y 

destroye

d 

No. of 

property 

destroyed 

 

       

Eastern 

Europe 

-0.0914     

(-1.59) 

0.0140  

(0.94) 

0.000682 

(0.83) 

0.000275 

(0.44) 

-0.135***   

(-3.43) 

-0.0258      

 (-1.31) 

       

       

MENA -

0.0991*** 

0.0141*** 0.000698 0.00113*** -

0.0373** 

0.00286 

 (-3.06) (4.23) (1.23) (3.55) (-2.00) (0.42) 

       

South 

America 

-0.130**   

(-2.30) 

-0.0204**  

 (-2.06) 

-0.00184**  

(-2.23) 

0.00135  

(0.86) 

-0.154***  

(-3.82) 

-0.0212**   

(-2.00) 

       

South Asia -0.0719* 0.0109** -0.000984 0.00000618 -

0.0707**

* 

-0.00415 

 (-1.93) (2.42) (-1.40) (0.02) (-3.41) (-0.81) 

Southeast  

Asia 

0.0584 

(1.14) 

0.0213** 

(2.08) 

-0.0104***  

(-2.77) 

0.00336**    

(-2.10) 

-0.162***  

(-5.20) 

-0.0329*** 

 (-3.26) 

       

Sub-Sahara 

Africa 

-0.0865**  

(-2.01) 

-0.00886  

 (-0.96) 

-

0.00113***  

(-2.65) 

-

0.000193***  

(-3.14) 

-0.222***  

(-8.39) 

-0.0352***  

(-2.90) 

       

Western 

Europe 

-0.331***  

(-6.69) 

-0.0275***  

(-3.29) 

-0.00139 

 (-0.38) 

-

0.00000964  

(-0.02) 

-0.134***  

(-3.47) 

-0.0214*** 

 (-2.74) 

       

 

t statistics in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01 

 

 

 

 

 

 

 

 

 

 

 

 



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

59 

 

  



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

60 

 

Table 6: Oil (futures) and terrorist attacks 

 (1) (2) (3) (4) 

 Attack days 

(1 Month 

Futures) 

Number of 

Attacks 

(1 Month 

Futures) 

Attack days         

(2 Month 

Futures) 

Number of 

Attacks                

(2 Month 

Futures) 

 

Full sample 

 

-0.0624***                 

   (-3.96) 

 

-0.0980***                        

(-6.46) 

 

-0.507***                            

(-61.31) 

 

0.00795***             

(3.59) 

Oil exporting -0.614*** -0.0150* -0.584*** 0.0101 

 (-35.21) (-2.52) (-31.70) (1.84) 

Oil importing -0.0594*** -0.00682** -0.0889*** 0.00598** 

 (-3.37) (-2.60) (-5.35) (2.83) 

Developing -0.339*** -0.0276** -0.339*** -0.0159** 

 (-7.29) (-3.23) (-7.29) (-2.76) 

Developed -0.0415* -0.0100*** -0.0751*** 0.00863*** 

 (-2.43) (-4.37) (-4.59) (3.75) 

Most 

developed 

-0.315*** -0.0260** -0.340*** -0.0126* 

 (-5.88) (-2.82) (-5.80) (-2.41) 

t statistics in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Abstract 

Using a comprehensive dataset of more than 33,000 firms from 54 countries in the period 1984-2015, 

we show that crude oil price uncertainty negatively influences corporate investment. More importantly, 

the effect is dependent on the market and stock characteristics of the firms. In addition, we discover that 

the effect is stronger in the crude oil producers group than for crude consumers. Our analysis reveals 

that the global financial crisis and market volatility phases significantly affect this relationship. Our 

results survive a range of robustness tests. 

 

 

Keywords: Crude oil price uncertainty; Corporate investment; Producer and consumer, Firm 

characteristics. 



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

62 

 

I. Introduction 

 

Investment decision is one of the most fundamental and important corporate activities, affecting a firm’s 

value and therefore the investors’ wealth. Both prior empirical and theoretical literature has 

conclusively suggested the negative impact of uncertainty on investment.24 Uncertainties may come 

from various sources, such as input cost and output price uncertainty (Pindyck, 1991; Dixit and Pindyck, 

1994; Bloom et al., 2007), macro uncertainty (Bloom, 2009), policy uncertainty (Gulen and Ion, 2016) 

and political uncertainty (Julio and Yook, 2011, 2012; An et al., 2016).  

 

Given that crude oil is one of input costs faced by firms, either directly or indirectly, then uncertainty 

regarding its prices can make the investment decision more difficult (Henriques and Sadorsky, 2011). 

The intuition underlying the relationship between crude oil price uncertainty and corporate investment 

is simple. Pindyck (1991) argues that uncertainty in the energy price leads to uncertainty about future 

energy prices, which causes firms to postpone investments. There are two channels through which crude 

price can affect a firm’s investments (Edelstein and Kilian, 2007; Hamilton, 2008; and Kilian, 2008). 

First, via “supply channel”, in which rising crude oil price pushes up the marginal cost of production as 

crude oil is an important input cost in the whole production chain.25 Second, via “demand channel”, in 

which oil price increase reduces consumer expenditure and leads to a decrease in demand for the firm’s 

product.  

 

Despite the broad and growing literature studying the impact of oil price uncertainty on investment at 

the aggregate level (Uri, 1980; Bernanke, 1983; Mohn and Misund, 2009; Elder and Serletis, 2010a, b), 

considerably less attention has been given to the oil price uncertainty effect on firm-level investment. 

Notable exceptions are Henriques and Sadorsky (2011) and Wang et al. (2017).26 Wang et al. (2017) 

develop and estimate a dynamic model of investment to investigate the impact in China’s market and 

reveal that the oil price uncertainty has a negative impact on corporate investment expenditures in this 

market. They also investigate the effect of state ownership and degrees of marketisation on the 

relationship between oil price uncertainty and corporate investment. They discover that the effect is 

stronger in state-owned firms and high-degree marketization periods compared to non-state-owned 

firms and low-degree marketization periods. Henriques and Sadorsky (2011) investigate how oil price 

volatility affects the strategic investment decisions of US firms and find the effect is negative.  

 

This study is motivated not only to extend the scarce literature examining the impact of crude oil price 

uncertainty on firm-level investment, but it also attempts to address a series of unanswered questions 

regarding this relationship. In particular, we aim to shed light on the following questions: first, how 

does the oil price uncertainty affect corporate investment from a global standpoint? Is this relationship 

homogeneous across different continents and between developed and emerging countries? Does this 

relationship depend on the firm’s characteristics? Does this relationship vary between oil consumers 

and oil producers? Finally, have the global financial crisis and market volatility phases affected this 

relationship? The answers to these questions are of particular importance as crude oil is not only the 

main input in modern industry but also the most traded commodity in the world. A comprehensive 

                                                           
24 The exceptions are the studies by Hartman (1972) and Abel (1983) that find that increased uncertainty may 

raise investment due to its positive effect on the value of a marginal unit of capital. See Carruth et al. (2000) and 

Bond et al. (2005), that provide a comprehensive survey of studies on uncertainty and investment, for more detail 

of this literature. 
25 Although some firms may not directly consume crude oil as part of their production process, crude oil could be 

an indirect cost to firms. 
26 It is worth noting that a number of papers test the effect of energy price on corporate investment, namely Yoon 

and Ratti (2011), Ratti et al. (2011), and Sadath and Acharya (2015). Yoon and Ratti (2011) examine the effect 

of energy price uncertainty on US manufacturing, while Sadath and Acharya (2015) test Indian manufacturing 

firms. They find that higher energy price uncertainty causes firms to be more cautious by reducing the 

responsiveness of investment to sales growth. Ratti et al. (2011) construct a dynamic model of investment for non-

financial firms in 15 European countries and observe that a real energy price increase reduces the persistence 

degree in the investment adjustment cost function. 
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understanding of the impact of its price uncertainty on investment decisions and factors affecting such 

an effect is critical to a firm’s success.  

 

Our analysis is based on a large sample of 33,075 firms from 54 countries. The sample consists of 

405,711 firm-year observations for the period 1984-2014. Our study distinguishes itself from the prior 

literature and contributes to the crude oil uncertainty and investment literature through five important 

directions.  

 

First, a very few empirical works that have been done on the effect of crude oil price uncertainty on 

firm-level investment have paid attention to individual countries, such as the US (Henriques and 

Sadorsky, 2011) and China (Wang et al., 2017). This study, on the other hand, provides a complete 

picture, the global perspective. In addition, our large set of data, which spans a wide range of countries, 

allows us to divide the data into different aggregate market sample groups, namely: developed, 

emerging, Africa, Americas, Asia, Australasia, and Europe. Given national differences in industrial 

structure, energy structure, energy consumption intensity, energy import dependence and energy pricing 

mechanisms, the impact of oil price shocks may be different across markets (Crompton and Wu, 2005). 

In fact, our findings consistently show a negative and statistically significant predictive effect in all 

aggregate markets. The magnitude of the effect, however, is heterogeneous. For the sample of 33,075 

firms, the crude oil price uncertainty negatively, and statistically significantly, predicts the corporate 

investment. One percent rises in crude oil price uncertainty reduce corporate investment by 0.487%. 

The negative and statistically significant predictive effect is found in both developed and emerging 

country panels, but the effect is stronger in the developed panel compared to the emerging panel. In 

continent-based panels, the negative predictive effect is consistently observed in five continent panels. 

However, the effect is panel-dependent in terms of magnitude, where the effect is strongest on the 

Australasia panel (0.697%) and weakest on the Africa panel (0.258%). The findings give credence to 

our approach of forming a wide range of panels. 

 

Second, to our knowledge, this study is the first to empirically investigate how the effect of crude oil 

price uncertainty on corporate investment is subject to the characteristics of a firm. The existing 

literature documents that the effects of crude oil on equity markets are sensitive to characteristics of 

firms. For example, Phan et al. (2015), Tsai (2015), Narayan and Sharma (2011, 2014), and Sadorsky 

(2008) document that the effect of crude oil price movements on stock returns varies with firm size. 

However, nothing is known about the effect of firm characteristics on the relationship between crude 

oil price uncertainty and corporate investment. We enhance the literature by testing this question. We 

perceive that the crude oil price uncertainty statistically significantly predicts corporate investment, the 

predictive effect is, however, subject to the characteristics of a firm. The small firms, growth firms, and 

most volatile firms are affected more by crude oil price uncertainty compared to large firms, value firms, 

and least volatile firms. A one percent increase in crude oil price uncertainty reduces corporate 

investments by 0.999%, 0.654%, and 0.670%, respectively. For the firm age-based panels, corporate 

investment in young firms is positively affected by the crude oil price uncertainty while the mature 

firms are negatively affected. In considering the trading volume-based firms, the results suggest that 

firms at different trading volume levels are almost equally impacted by crude oil price uncertainty. 

 

Third, a common limitation of previous studies is that they only focus on a single oil consuming country, 

such as the US or China, and do not differentiate oil-producer countries (industries) from oil-consumer 

countries (industries) when investigating the effect of crude oil price uncertainty on corporate 

investment. In fact, a few studies have found the heterogeneous impacts of oil price shocks on stock 

markets in oil-consuming countries and oil-producing countries. For instance, Park and Ratti (2008) 

reveal that effects of oil price shocks and oil price volatility on real stock returns are different between 

oil exporting and importing countries. Jung and Park (2011) find a significant difference in the response 

of stock market returns to oil supply and demand shocks in an oil-exporting country (Norway) and an 

oil-importing country (Korea). More recently, Phan et al. (2015) find that oil price changes affect 

producers and consumers differently, where oil price increase has a positive effect on the stock returns 

of oil producing sectors but a negative effect on the stock returns of oil consuming sectors. Thus, it is 

of great importance to investigate whether the differences in the oil price uncertainty impacts on 
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corporate investment widely vary between oil-producers and oil-consumers. In this paper, we aim to 

address previous studies’ limitations by classifying our sample into oil producers and consumers using 

two approaches: (1) we use the Global Industry Classification Scheme to define crude oil producing 

and consuming industries, (2) we categorise crude oil producing and consuming countries based on the 

country’s crude oil consumption and production. We expect that corporate investments in crude oil 

producing countries and industries are affected more strongly than crude oil consuming countries and 

industries. This expectation is reasonable as exposure to the oil price is stronger for the crude oil 

producer than for the crude oil consumer. In other words, crude oil is of greater importance for oil 

producers compared to oil consumers. For example, the profitability of crude oil is strongly dependent 

on oil price uncertainty while, in contrast, the profitability of crude consumers can be determined by a 

wide range of factors and oil price is only a part of them. The crude oil price uncertainty can affect the 

consumers either directly (via the increase in petroleum and gas prices) or indirectly (via the rise in 

prices of goods and services whose production depends on the usage of oil). Consistent with our 

prediction, the empirical results show that the magnitude of the predictive effect of crude oil uncertainty 

on corporate investment is statistically significantly different between oil consumers and producers. 

That is, this effect is more pronounced in the crude oil producing countries (industries) than the crude 

oil consuming countries (industries). 

 

Fourth, we investigate the effect of the global financial crisis on the predictive effect in our baseline 

findings. The previous studies provide strong evidence for the effect of the global financial crisis on the 

relationship between crude oil and stock market (Wen et al., 2012; Aloui et al., 2013; Tsai, 2015; and 

others). Wen et al. (2012) find a significantly increasing dependence between crude oil (WTI oil spot 

price) and the US stock market (S&P500 index) during the global financial crisis, while it weakens in 

the China market (Shanghai stock market composite index). Aloui et al. (2013) show evidence of a 

positive dependence between the oil and stock markets of the Central and Eastern European countries 

but the dependence patterns change during the global financial crisis. Tsai (2015) shows that the oil 

prices negatively influence firms’ stock returns in the US stock market before the global financial crisis, 

but the effect turns to positive during and after such a crisis. This paper contributes to the literature by 

offering a new finding, that the global financial crisis dampens the negative impact of a rise in crude oil 

price uncertainty on corporate investment. This finding is consistent regardless to the panels at both 

aggregate market and stock-characterised panel levels.  

 

Last, but not least, we extend the existing literature of crude oil uncertainty and corporate investment 

by examining how different market volatility phases change the response of corporate investment 

decisions to oil price uncertainty. Using daily stock market price data, we compute one-year stock return 

variance of the world market (proxied by the MSCI World Index). When the market stock return 

variance is higher than the its median over the sample period, the market is considered as in a volatile 

phase. We find that the negative effect of crude oil price uncertainty on corporate investment is stronger 

when the market is volatile.  

 

Our aforementioned findings survive through a range of robustness tests: (a) using two alternative 

measures of corporate investments, (b) using an alternative measure of crude oil price uncertainty, and 

(c) using an alternative regression model with additional firm-related control variables.  

 

The remainder of this paper is organised as follows. In the next section, we develop our main hypothesis. 

Section III describes the data and discusses preliminary statistics on the data while section IV describes 

our main results, additional tests, and robustness tests. Finally, Section V sets forth our conclusions. 

 

II. Hypothesis development 

In this section, we develop a testable hypothesis by discussing several mechanisms through which crude 

oil price uncertainty affects corporate investments, basing the hypothesis on both theories and empirical 

findings in the existing literature. A firm’s investment decision is made based on its net present value, 

which is equal to the sum of all discounted expected cash flows produced by that investment. 
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Accordingly, oil price uncertainty can affect firm investment decisions either by affecting future cash 

flows or by affecting the discount rate. 

  

First, crude oil is one of the essential inputs for most goods and services production. Although some 

firms may not directly consume crude oil as part of their production processes, crude oil could be an 

indirect cost to firms. 27 While a rising crude oil price pushes up the marginal cost of production via the 

“supply channel”, it reduces consumer expenditures and leads to a decrease in demand for the firm’s 

product via the “demand channel” (Pindyck, 1991). Accordingly, the more uncertain the oil price, the 

greater movements of expected cash flow produced by investment opportunities. Second, any volatility 

in oil price is often seen as inflationary or deflationary, which is responded to by central banks through 

adjusting interest rates (Ferderer, 1996; Sadorsky, 1999). Together, by affecting future cash flows 

and/or the discount rate, a firm’s investment decision is likely to be affected by the crude oil uncertainty.  

 

In addition, firms invest if the net present value of an investment opportunity is greater than the option 

value of waiting. The theoretical foundations for real options in firm-level investment decisions under 

uncertainty are earliest developed by Bernanke (1983), McDonald and Siegel (1986), Pindyck (1988, 

1991) and Dixit and Pindyck (1994). They show that a firm faced with heightened uncertainty may 

delay implementing investment in capital equipment until new information emerges. Bloom et al. 

(2007) present a model utilising different types of adjustment costs, uncertainty effects, and functional 

form of revenue functions in a panel of the UK manufacturing firms. They reveal that uncertainty 

reduces a firm’s irreversible investment in response to sales shocks. This is because during times of 

increased volatility of a firm's demand shock, firms become more cautious and respond less. Bloom 

(2009) builds a model simulating a macro uncertainty shock on hiring and investment, suggesting that 

higher uncertainty increases the real option value to waiting, which causes firms to temporarily pause 

investment until the resolution of uncertainty. In the context of political uncertainty and corporate 

investment, Julio and Yook (2011, 2012) and An et al. (2016) document that political uncertainty leads 

firms to reduce investment expenditures. They state that around election times, firms are likely to be 

more cautious and delay investment expenditures until the uncertainty of the election outcome is 

resolved. 

 

Consistent with the literature on real options, an increase in oil price uncertainty raises the option value 

of waiting to invest as waiting for uncertainty to be resolved will improve the chances of making the 

correct investment decision. (Pindyck, 1991; Dixit and Pindyck, 1994). Oil price uncertainty thereby 

causes firms to postpone their firms’ investment. The above discussions lead us to the following 

hypotheses:  

 

Hypothesis 1: Oil price uncertainty leads to lower corporate investment.  

 

III. Data 

In this section, we first describe the datasets, their sources, and panel construction. We then summarize 

the data using commonly noted statistics. 

 

A. Data 

Our data sample comprises two sets of data: firms’ specific data and crude oil price uncertainty data. In 

our econometric framework that we discuss later (see, Julio and Yook, 2012), besides the corporate 

investment, the main variable of interest, we also control for cash flow (CF), Tobin’s Q (Q), and growth 

rate of GDP (GDP). All data are collected from DATASTREAM, except for GDP data downloaded 

from the Global Financial Database. Specific details on each of these variables are provided in Table I. 

Data is collected for the period 1984 to 2015 at the annual frequency.28 We apply the common data 

                                                           
27 This is because most firms, which do not consume crude oil, do consume petroleum products (gasoline, diesel 

fuel, heating oil, jet fuel, etc.) whose prices move in line with oil price.  

28 The start date of our sample is dictated by the availability of crude oil price data. 

http://www.sciencedirect.com.ezproxy.lib.monash.edu.au/science/article/pii/S0140988310000174#bib21
http://www.sciencedirect.com/science/article/pii/S014098831000143X#bb0280
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filtering process, namely, (1) excluding all financial and utility stocks, (2) including only stocks that 

have data for all variables, (3) and winsorizing variables at 1st and 99th percentiles to remove the 

influence of outliers,29 we end up with a total of 33,075 firms from 54 countries which consist of 

405,711 firm-year observations.30  

[Insert Table I here] 

 

We group our 33,075 firms into various panels based on their location and stock characteristics. First, 

we have aggregate market panels such as a global (includes all stocks in our sample) panel, a developed 

country panel, an emerging country panel, and five continent-based panels. Second, we construct a 

number of panels based on stock characteristics including size (proxied by market capitalization), age, 

book-to-market ratio, trading volume and stock return volatility. The stocks are independently sorted in 

ascending order into three equal groups based on each of these five characteristics. We have: (i) three 

size-based panels, from low market capitalization (MV1) to high market capitalization (MV3); (ii) three 

firm age-based panels, from youngest firms (FA1) to oldest firms (FA3); (iii) three book-to-market 

(BM) ratio-based panels, from low BM (BM1) to high BM (BM3); (iv) three trading volume-based 

panels, from low trading volume (TV1) to high trading volume (TV3); and (v) three stock return 

volatility-based panels, from low volatility (VO1) to high volatility (VO3). Consequently, we end up 

with 23 panels of firms in total.  

 

To understand the features of corporate investment data, we plot the series of equal-weighted average 

corporate investments of firms for aggregate market panels in Figure I. There are two main observations 

from this figure. First, there is a significant disparity in terms of magnitude and fluctuation in corporate 

investment across the various panels of firms. Second, the overall trend of corporate investment in all 

panels of firms (the exception is Australasia) is declining over time. 

[Insert figure 1 and 2 here] 

 

The second type of data is crude oil price uncertainty. Two measures of oil price uncertainty are widely 

used in the existing literature include the standard deviation of daily returns of international oil prices 

(Sadorsky, 2008; Henriques and Sadorsky, 2011), and the one generated from a GARCH model 

(Hamilton, 2003; Sadorsky, 2006; Yoon and Ratti, 2011). In this paper, we use both of the methods to 

measure international oil price uncertainty. The former measure is considered as the main measure 

while the latter measure is considered as a robustness test. We use the daily oil price obtained from the 

US Energy Information Agency website, and choose the daily closing oil price of the nearest contract 

to maturity of West Texas Intermediate. Annual oil price volatility is measured following Sadorsky 

(2008): 

 

𝜎𝑡 = √
1

𝑁 − 1
∑(𝑟𝑡

𝑜 − 𝐸(𝑟𝑡
𝑜)2

𝑁

𝑡=1

 . √𝑁 

The crude oil price volatility and end of the year closing prices are plotted in Figure 2. The figure shows 

that both oil price and volatility have changed over the estimation period of 1984-2015. Oil price 

volatility was particularly high in 1986 (Saudi Arabia and other OPEC members increase their share of 

                                                           
29 This data filtering process is widely used in the corporate investment literature (Bates et al., 2009; Duchin et 

al., 2010; Julio and Yook, 2012; Asker et al., 2014; An et al., 2016) 
30 Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China, Colombia, Croatia, Denmark, 

Egypt, Finland, France, Germany, Greece, Hong Kong, Hungary, India, Indonesia, Ireland, Israel, Italy, Japan, 

Jordan, Macedonia, Malaysia, Mexico, the Netherlands, New Zealand, Norway, Oman, Pakistan, Peru, the 

Philippines, Poland, Portugal, Russia, South Africa, South Korea, Spain, Sri Lanka, Sweden, Switzerland, Taiwan, 

Thailand, Tunisia, Turkey, Ukraine, the United Kingdom, the United States, Venezuela, and Vietnam.  
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the oil market), 1990 (the Gulf War), 1998 (Iraq War), 2008 (oil price bubble). Regarding the oil price, 

it reached its peaks in years 2008 and 2011-2013.  

 

B. Summary statistics 

Table II presents the summary statistics of our data set. Column 1 shows all 23 panels of firms and 

column 2 lists the number of firms per panel. The 23 panels consist of eight aggregate market-based 

panels and 15 stock characteristic-based panels. Several features of this data are evident. First, there are 

large variations in corporate investment across samples of aggregate markets and stock characteristics. 

The average corporate investment for a panel of all firms, for example, is 7.35% of prior-year total 

assets. The average corporate investment of the emerging panel (7.72%) is slightly higher than that of 

the developed panel (7.08%). For the continental markets, the average corporate investment varies 

between 6.58% (Europe) and 11.07% (Australasia) of prior-year total assets. Reading the corporate 

investment for panels based on the stock characteristics, we find that it declines with firm size, firm 

age, and book-to-market ratios but increases with trading volume and volatility.  

[Insert Table II here] 

 

Second, a strong heterogeneity feature is observed from data on CF (as a percentage of total assets). At 

the continent level, for instance, CF ranges from 1.42% (Australasia) to 10.08% (Africa). At the stock 

characteristic-based panel level, CF increases with size, age, and trading volume but decreases with 

volatility and no clear pattern for the book-to-market ratio. Third, concerning Q (market value to book 

value of assets), we observe a similar heterogeneity. The incentive to invest, as reflected by Q, is highest 

in Australasia (2.53) and lowest in Asia (2.13) at the continent level. At the stock characteristic-level, 

Q declines with book-to-market ratio and volatility while it increases with market value, age, and trading 

volume. 

 

In summary, we observe that the corporate investment and other firm control variable are heterogeneous 

across 23 panels. This finding gives credence to our approach of forming a wide range of panels of 

firms based on aggregate markets and stock characteristics.  

 

IV. Empirical Findings 

 

The results are analysed in multiple subsections. First, we present evidence on the relationship between 

crude oil price uncertainty and corporate investment by using preliminary analysis (section A) and panel 

data regression models (section B). Next, we have additional analyses (section C) on our baseline results 

and, finally, we implement a range of robustness tests (section D). 

 

A. Preliminary result 

This section aims to understand preliminary evidence on the relationship between crude oil price 

uncertainty and corporate investment before we embark on more formal tests. To achieve this aim, we 

consider two tests: (i) a univariate analysis to capture corporate investment during high and low crude 

oil price uncertainty; and (ii) a Granger causality test to disclose the causation significance of crude oil 

price uncertainty on corporate investment. The main outcome observed from these tests is that crude 

oil price uncertainty does negatively influence corporate investment.  

[Insert Table III here] 

 

We start with a univariate analysis, the results of which are reported in Table III. This table reports the 

average values of corporate investment in the years with high crude oil price uncertainty (column 2) 

versus the years with low crude oil price uncertainty (column 3). High crude oil price uncertainty is 

when crude oil price uncertainty greater than its median over the sample period and it is low crude oil 

price uncertainty otherwise. The difference between corporate investments in high and low crude oil 

price uncertainty and its t-statistics are reported in columns 4 and 5, respectively. Out of the 23 panels 

, there are 20 panels (87%) that have higher corporate investment in low oil price uncertainty years 

compared to that in high crude oil price uncertainty years. In these 20 panels, the difference (high minus 
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low) is negative and statistically significant in 19 panels, which is 83% of the total number of panels. 

Considering the global panel that contains all stocks, high crude oil price uncertainty years have a 

corporate investment that is 5.41% lower than corporate investment in low crude oil price uncertainty 

years. Across statistically significant stock characteristic-based panels, corporate investment is, on 

average, 5.54% lower in high crude oil price uncertainty years. This implies that for the majority of 

firm-panels, there is statistical evidence of the negative effect of crude oil price uncertainty on corporate 

investment. 

[Insert Table IV here] 

 

We turn now to the Granger’s causality test, which is reported in Table IV. We test the hypothesis that 

crude oil price uncertainty does not cause corporate investment. The null hypothesis is tested based on 

the F-statistic (column 2) and p-value (column 3). Out of 23 panels, the hypothesis that crude oil price 

uncertainty does not cause investment is rejected at least at the 10% level in all panels, except Africa. 

In most of the cases, the hypothesis is comfortably rejected at 1% level. Therefore, the results of the 

Granger causality test suggest a solid evidence for the effect of crude oil on corporate investment. 

 

B. Main findings 

Our preliminary analysis suggests a statistically significant and negative influence of crude oil price 

uncertainty on corporate investments. However, it is important to note that the univariate analysis or 

Granger causality does not control for other variables and cross-firm variations. To eliminate these 

limitations of those tests, we now employ more formal multivariate regression models in order to test 

our proposed hypotheses. Our main regression model is based on a standard investment-type 

specification that is widely used in the literature (see, for instance, Blundell et al., 1992; Blundell et al., 

1999; Julio and Yook, 2012), and has the following form: 

 
𝐼𝑁𝑉𝑖,𝑡 =  𝛼 + 𝛽1𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 + 𝛽2𝑄𝑖,𝑡−1 + 𝛽3𝐶𝐹𝑖,𝑡 + 𝛽4𝐺𝐷𝑃𝑖,𝑡−1 + 𝜀𝑖,𝑡                 (1) 

 

where 𝑖  and 𝑡  are index firm and time, respectively. The dependent variable, investment (INV), is 

defined as capital expenditure scaled by total assets in the preceding year. The variable OILVOL is the 

measure of crude oil price uncertainty, which is described in the previous section. Q is Tobin’s q, a 

popular determinant for corporate investment, measured by the ratio of the market value of assets to the 

book value of assets. CF is cash flow, measured as earnings before interest and taxes, minus taxes and 

interest expenses, plus depreciation and amortization. Following (see Julio and Yook, 2012; and Gulen 

and Ion, 2015), we use the growth rate of GDP to control for general economic conditions. Firm and 

year effects are also modeled using a panel fixed effect model. As is common practice, standard errors 

are clustered at the firm level to correct for potential cross-sectional and serial correlation in the 

regression’s error term, 𝜀𝑖,𝑡. 

 

Before we examine the outcomes from the regression model, we test for the stationary of each of the 

variables by implementing the Levin, Lin, and Chu (2002) and Im, Pesaran and Shin (2013) panel unit 

root tests, which examine the null hypothesis of a panel unit root. The results, which are not reported, 

suggest that all variables in our model are panel stationary. Therefore, our estimates are free of any bias 

resulting from the persistency of the explanatory variables. 

 

[Insert Table V here] 

 

The results of the regression model testing predictive effect of crude oil price uncertainty on corporate 

investment are presented in Table V. First, we consider the results in aggregate market panels, reported 

in Panel A. There, three observations stood out. The first observation relates to the sign of the effect of 

crude oil price uncertainty on corporate investment. In all panel models, the sign is negative, suggesting 

that crude oil price uncertainty reduces corporate investment. The second observation regards the 

statistical significance of the results. We find that negative coefficients of crude oil price uncertainty 

are statistically significant at least at the 10% level in all panels. Third, although the predictive effect is 
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consistently negative and statistically significant in all panels, the magnitude of the effect is 

heterogeneous. In the other words, the strength of the predictive effect is different across panels. The 

global panel experiences that one percent rises in crude uncertainty reduce corporate investment by 

0.487%. Developed countries evidence a larger effect of crude oil price uncertainty on corporate 

investment compared to that of emerging countries (0.452% compared to 0.362%, respectively). Among 

five continents, the effect is strongest for Australasia and lowest for Africa. For every one percent 

increase in crude uncertainty, the corporate investment of firms in Australasia and Africa panels 

decreases by 0.697% and 0.258%, respectively.  

 

We now turn our attention to the predictive effect of crude oil on corporate investment for panels sorted 

by stock characteristics. We find that for 15 out of 15 panels, the crude oil price uncertainty statistically 

significantly predicts corporate investment. A number of very interesting highlights emerges. First, the 

magnitude of the negative effect decreases with firm size. That is, corresponding to a one percent 

increase in crude oil price uncertainty, large firms’ investments are likely to decrease by 0.444% while 

small firms’ investments fall by 0.999%. Similarly, we find that increases in firms’ book-to-market ratio 

also reduce oil price uncertainty exposure. However, this trend does not apply to firm age panels. In 

particular, crude oil price uncertainty positively affects young firms’ investments while the effect is 

negatively significant for mature firms. A one percent increase in crude oil price uncertainty reduces 

the corporate investment of mature firms by 0.38%. Next, we find that firms at different trading volume 

levels are almost equally impacted by crude oil price uncertainty. A one percent increase in crude oil 

price uncertainty reduces corporate investment by 0.418% to 0.522%. With VO-based panels, the panels 

of most volatile firms are more severely affected by crude oil price uncertainty, where a one percent 

increase in crude oil price uncertainty reduces corporate investment by 0.670%. 

 

In brief, in terms of the economic importance of crude oil price uncertainty, the most negatively affected 

panels based on stock characteristics are small firms, mature firms, growth firms, and high VO firms. 

For these panels of firms, a one percent increase in crude oil price uncertainty reduces the corporate 

investments by 0.999%, 0.380%, 0.654%, and 0.670%, respectively. Finally, we examine the results for 

the other determinants of corporate investment, Q, CF, and GDP. Their coefficients are, as expected, 

statistically significant in at least 21/23 panels. Moreover, the adjusted R-squared varies in the range of 

28.3% to 43.3%. 

 

C. Additional tests 

Having shown that investment is systematically lower when the crude oil price uncertainty increases in 

most panels, we now deepen the analysis by investigating (a) whether the impact varies between crude 

oil producers and crude oil consumers, (b) whether there is an effect of global financial crisis on the 

predictive effect of crude oil price uncertainty on corporate investment, and c) whether the volatility 

phases of stock market affect this relationship.  

 

C.1 Results based on crude oil producer/consumer 

We expect that the overall impact of oil price uncertainty on corporate investment depends on 

whether a firm is a consumer or producer of oil and oil related products. We use two approaches 

to categorize crude oil consumers and producers. In the first approach, we utilize the Global 

Industry Classification Scheme and a firm is defined as crude oil producer if it belongs to one 

of the crude oil producing industries.31 In the second approach, we collect data on crude oil 

consumption and production by country for the 54 countries in our sample, from the US Energy 

Information Administration (EIA) website. A country is defined as a crude oil producer if its 

crude oil production is higher than its crude oil consumption. Conversely, a country is defined 

                                                           
31 Oil & gas drilling; oil & gas equipment & services; integrated oil & gas; oil & gas exploration & production; 

oil & gas refining & marketing; and oil & gas storage & transportation. 
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as a crude oil consumer if its crude oil production is less than its crude oil consumption. The 

regression model is of the following form: 
𝐼𝑁𝑉𝑖,𝑡 =  𝛼 + 𝛽1𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 + 𝛽2𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 ∗ 𝑃𝑅𝑂𝐷𝑈𝐶𝐸𝑅_𝐼𝑁𝐷𝑈𝑆𝑇𝑅𝑌𝑖 + 𝛽3𝑄𝑖,𝑡−1 + 𝛽4𝐶𝐹𝑖,𝑡

+ 𝛽5𝐺𝐷𝑃𝑖,𝑡−1 + 𝜀𝑖,𝑡 
  (2) 

𝐼𝑁𝑉𝑖,𝑡 =  𝛼 + 𝛽1𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 + 𝛽2𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 ∗ 𝑃𝑅𝑂𝐷𝑈𝐶𝐸𝑅_𝐶𝑂𝑈𝑁𝑇𝑅𝑌𝑖 + 𝛽3𝑄𝑖,𝑡−1 + 𝛽4𝐶𝐹𝑖,𝑡

+ 𝛽5𝐺𝐷𝑃𝑖,𝑡−1 + 𝜀𝑖,𝑡 
  (3) 

where all variables are as previously described except PRODUCER_INDUSTRY, which is 

crude oil producer dummy that equals 1 if the firm is a crude oil producing industry and zero 

otherwise; and PRODUCER_COUNTRY, which is crude oil producer dummy that equals 1 if 

the firm is a crude oil producing country and zero otherwise. The regressions control for the 

firm and year fixed effects and t-statistics are corrected for clustering of the residual at the firm 

level. 
[Insert Table VI here] 

 

The results are reported in Table VI. This table reports the coefficients and their t-statistics for 

crude oil price uncertainty and its interaction with producer dummy variables.32 Our findings 

from this test have a number of following features. First, the results from earlier analysis still 

hold after controlling for the crude oil consumer/producer characteristic. The effect of crude 

oil price uncertainty on corporate investment is still negative and statistically significant in 

most cases. Second, the majority of the interaction between crude oil price uncertainty, 

OILVOL, and either crude oil producing industry, PRODUCER_INDUSTRY, or crude oil 

producing country, PRODUCER_COUNTRY, is negative and statistically significant. This 

result suggests that the negative effect of crude oil price uncertainty on corporate investment 

is strengthened in the crude oil producing industries or countries. In the other words, when the 

crude oil price uncertainty increases, the firms in producing industries or countries reduce their 

corporate investment more than the firms in crude oil consuming industries or countries. In 

considering the coefficients of interaction between OILVOL and PRODUCER_INDUSTRY, we 

find they are negative and statistically significant in four out of eight aggregate markets, which 

are the global, developed, Americas, and Australasia panels. This result is also found in nine 

out of 15 panels at the stock characteristic-based panel level (MV1, MV3, FA2, FA3, BM2, 

TV2, TV3, VO2 and VO3). In the case of the interaction between OILVOL and 

PRODUCER_COUNTRY, the coefficients are negative and statistically significant in four 

aggregate markets (global, emerging, Asia, and Europe) and seven firm-characterized panels 

(MV2, MV3, FA2, FA3, BM2, TV3, and VO3) 

 

C.2 Results based on global financial crisis 

We now examine the effect of the global financial crisis on the relationship between crude oil price 

uncertainty and corporate investment. In particular, we test whether crude oil price uncertainty exerts 

different effects on corporate investment during the crisis. The regression model takes the following 

form: 

𝐼𝑁𝑉𝑖,𝑡 =  𝛼 + 𝛽1𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 + 𝛽2𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 ∗ 𝐶𝑅𝐼𝑆𝐼𝑆𝑡−1 + 𝛽3𝑄𝑖,𝑡−1 + 𝛽4𝐶𝐹𝑖,𝑡 + 𝛽5𝐺𝐷𝑃𝑖,𝑡−1 + 𝜀𝑖,𝑡 

 (4) 

where CRISIS is a dummy variable which equals 1 if the year is in global financial crisis (2007-2009) 

and zero otherwise. The regressions control for the firm and year fixed effects and t-statistics are 

                                                           
32 In Australasia panel, we cannot run the equation (3) due the PRODUCER_COUNTRY variable in this panel is 

a constant. The results are represented as “---”. 
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corrected for clustering of the residual at the firm level. The results for estimating equation (4) are 

reported in Table VII. In this table, we report the coefficients of crude oil price uncertainty and its 

interaction with global financial crisis dummy variable. As a general observation, we find consistent 

results with earlier analysis after controlling for the global financial crisis effect. However, the global 

financial crisis does significantly influence on the relationship between crude oil price uncertainty and 

corporate investment. In considering the coefficients of the interaction between crude oil price 

uncertainty variable and global financial crisis dummy, we observe that they are positive and 

statistically significant in most cases. This result implies that the negative impact of a rise in crude oil 

price uncertainty on corporate investment is weaker in the global financial crisis period. This finding is 

consistent regardless to panel levels. The coefficients are positive and statistically significant at the one 

percent level of significance in all aggregate market panels and 14 out of 15 firm-characterized panels. 

 

[Insert Table VII here] 

 

 

C.3 Results based on phases of market volatility 

Market volatility phases can potentially also influence the effect of crude oil price uncertainty on 

corporate investment. Using daily stock market price data, we compute one-year stock return variance 

of the world market (proxied by the MSCI World Index). When the market variance is higher than its 

median over the sample period, the market is considered as in a volatile phase and the VOLATILE 

dummy variable takes a value of one. It takes a value of zero otherwise. We check for robustness of the 

baseline results by allowing outcomes to vary over the market volatility phases using the following 

regression model: 

 

𝐼𝑁𝑉𝑖,𝑡 =  𝛼 + 𝛽1𝑂𝐼𝐿𝑉𝑂𝐿𝑡 + 𝛽2𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 ∗ 𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐸𝑡−1 + 𝛽3𝑄𝑖,𝑡−1 + 𝛽4𝐶𝐹𝑖,𝑡 + 𝛽5𝐺𝐷𝑃𝑖,𝑡−1

+ 𝜀𝑖,𝑡 
  (5) 

 

The results are presented in Table VIII. We find consistent results in term of predictive effect 

of crude oil price uncertainty on corporate investment after controlling for the market volatility 

phases. With respect to the effect of market volatility phases, we examine the interaction of 

OILVOL and VOLATILE variables. There are three main features of the results. First, the 

coefficients are negative in all panels. Second, we can comfortably reject in all cases the null 

hypothesis of the coefficient is not different from zero at one percent significance level in 20 

out 21 panels. Third, the findings are consistent regardless of panel levels. These findings imply 

that the negative effect of crude oil price uncertainty on the corporate investment is stronger 

when the market is volatile. In the other words, the point of conclusion here is that firms tend 

to reduce their investments due to the rise in crude oil price uncertainty more when the market 

is volatile. 
[Insert Table VIII here] 

 

D. Robustness tests 

The goal of this section is to check the robustness of our main findings. We investigate whether the 

documented effect of crude oil price uncertainty on corporate investment is robust to (a) two alternative 

measures for corporate investment, (b) an alternative measure of crude oil price uncertainty, and (c) 

alternative specifications of the main model, where we include additional firm control variables into the 

regression. The results are reported in the Appendix of this article.  

 

D.1 Alternative proxy for corporate investment 
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We use two alternative measures of corporate investment INV_A1 and INV_A2 to test the robustness of 

our earlier findings. INV_A1 is calculated as capital expenditure scaled by property, plant, and 

equipment of previous year while INV_A2 is calculated as the total asset growth rate. Several studies 

use these two measures of investment; see, inter alia, Hoshi et al. (1991), Kaplan and Zingales (1997), 

Mayers (1998), Korkeamaki and Moore (2004), Duchin et al. (2010), Eisdofer et al. (2013), Kahle and 

Stulz (2013), Asker et al. (2015), and González (2016)  

 

The results are reported in the Table A.1 in the appendix. We find that with alternative measures of 

corporate investment, the results from the alternative measure are precisely consistent with the main 

measure’s results. The alternative measures’ results are even stronger in terms of magnitude. Using 

INV_A1, the effect of crude oil price uncertainty on corporate investment is negative and statistically 

significant at the one percent level in all aggregate market panels and 14 out of 15 stock characterized 

panels. On the other hand, the effect is negative and statistically significant in six out of eight aggregate 

market panels and 13 out of 15 stock characterized panels when we utilize INV_A2. We also find a 

similar pattern with earlier results in firm-characterized panels using the new measures, which is the 

most negatively affected panels based on stock characteristics are small firms, mature firm, growth 

firms, and high VO firms. In other words, while our results on the effect of crude oil price uncertainty 

on corporate investment are sensitive to the definition of corporate investments, they do not detract 

from the notion that crude oil price uncertainty influences corporate investment. 

 

D.2 Alternative measure of crude oil price uncertainty 

For the second robustness test, we use the variance generated from a GARCH(1,1) model as a proxy 

for crude oil price uncertainty. This measure has been used widely in the literature (see Sadorsky, 2008; 

Henriques and Sadorsky, 2011; Wang et al., 2017). The results are reported in Table A.2 in the 

appendix. In short, we observe very similar results to the ones using the standard deviation of daily 

crude oil returns reported earlier. Regardless of the measures of crude oil price uncertainty, we observe 

a strong negative relation between crude oil price uncertainty and corporate investment, consistent with 

the baseline results. 

 

D.3 Alternative regression model with additional firm control variables 

We next test the consistency of our findings by adding further firm control variables into the standard 

investment model by (Blundell, Bond, Devereux, and Schiantarelli, 1992; Blundell, Griffith, and Van 

Reenen, 1999; Julio and Yook, 2012). We add the one period lagged INV and two additional variables: 

GROWTH, which is sales growth rate calculated as the change in sales scaled by sales previous year; 

and LEVERAGE, which is firm leverage ratio calculated as total debt scaled by total assets.33 The 

regression takes the following form: 

 

𝐼𝑁𝑉𝑖,𝑡 =  𝛼 + 𝛽1𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 + 𝛽2𝑄𝑖,𝑡−1 + 𝛽3𝐶𝐹𝑖,𝑡 + 𝛽4𝐺𝐷𝑃𝑖,𝑡−1 + 𝛽5𝐼𝑁𝑉𝑖,𝑡−1 + 𝛽6𝐺𝑅𝑂𝑊𝑇𝐻𝑖,𝑡−1

+ 𝛽7𝐿𝐸𝑉𝐸𝑅𝐴𝐺𝐸𝑖,𝑡−1 + 𝜀𝑖,𝑡 

  (6) 

The results are reported in Table A.3. Our main finding is that the baseline results on the predictive 

effect of crude oil price uncertainty on corporate investment are consistent. From this exercise, we 

conclude that the choice of model’s specifications did not in any way influence the relationship between 

crude oil price uncertainty and corporate investment.  

 

V. Concluding remarks 

This paper is motivated by our lack of understanding of the influence of crude oil price uncertainty on 

corporate investment. We analyze this effect for a sample of 33,075 firms that belong to 54 countries 

by categorizing firms into panels: a global panel of all firms, developed country panel, emerging country 

                                                           
33 These variables have been used by An et al. (2016) and Wang et al. (2017) to explain the corporate investment. 
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panel, five continent-based panels, and into 15 panels constructed using firm characteristics, such as 

size, age, book-to-market ratio, trading volume, and volatility.  

 

Our key findings can be summarized as follows, (1) our main findings reveal a negative and statistically 

significant predictive effect of crude oil price uncertainty on corporate investment expenditures, (2) the 

corporate investments of small firms, mature firms, growth firms, and high VO firms are negatively 

affected by crude oil price uncertainty the most, (3) we discover that the effect is stronger in the crude 

oil producing countries and industries than the crude oil consuming countries and industries, (4) the 

predictive effect of crude oil price uncertainty was weaker during the global financial crisis, (5) during 

a volatile market, the effect is stronger, (6) our findings survive through a wide range of robustness 

tests. 
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Figure I: Plot of corporate investment 

This figure plots time-series averages (equal-weighted) of the corporate investment for aggregate market panels over the period 1984-2015. 
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Figure II: Plot of crude oil prices and price uncertainty 

This figure plots crude oil prices and price uncertainty over the period 1984-2015. 
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Table I: Variables description  

Variable Description 

INV Corporate investment: calculated as capital expenditure scaled by total 

assets in a previous year 

OILVOL Oil uncertainty measured by the standard deviation of daily returns of 

oil prices  

OILVAR Oil uncertainty measured by the GARCH variance from a 

GARCH(1,1) model 

Q Tobin Q: the ratio of the market value of assets to the book value of 

assets 

CF Cash flow: calculated as earnings before interest and taxes minus taxes 

and interest expense plus depreciation and amortization, scaled by total 

assets  

PRODUCER_COUNTRY Crude oil producing country dummy: equals 1 if the firm is a crude oil 

producing country and zero otherwise 

PRODUCER_INDUSTRY Crude oil producing dummy: equals 1 if the firm is a crude oil 

producing industry and zero otherwise 

GDP A country's GDP growth rate 

CRISIS Crisis dummy: equals 1 if the year is in the global financial crisis 

(2007-2009) and zero otherwise 

VOLATILE High volatile market dummy: equals 1 when the variance of one-year 

daily returns of the world market (proxied by the MSCI World Index) 

is higher than the its median over the sample period and zero otherwise 

INV_A1 Corporate investment alternative measure 1: calculated as capital 

expenditure scaled by property, plant, and equipment of previous year 

INV_A2 Corporate investment alternative measure 2: calculated as the total 

asset growth rate 

GROWTH Sales growth rate, calculated as the change in sales scaled by sales of 

the previous year. 

LEVERAGE Firm leverage ratio, calculated as total debt scaled by total assets. 
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Table II: Summary statistics of stock data. 

This table reports the number of firms and the average value of stock variables and its standard 

deviation for: global panel, developed and emerging panels, five continent-based panels, and 15 firm-

characterized panels.  

Panels 
No. 

of firm 

INV Q CF GDP 

Mean (%) SD Mean SD Mean (%) SD Mean (%) SD 

Panel A: Aggregate market panels 

Global 33,075 7.35 11.35 2.32 5.16 6.18 8.50 4.09 3.51 

Developed 17,678 7.08 11.78 2.27 5.52 5.29 8.72 2.63 2.32 

Emerging 15,397 7.72 10.74 2.39 4.59 7.35 8.06 6.17 3.86 

Africa 356 7.77 9.56 2.44 4.21 10.08 8.75 4.00 7.94 

Americas 8,339 8.52 13.97 2.51 7.40 5.13 10.75 2.80 2.03 

Asia 17,328 6.75 9.72 2.13 3.74 6.83 7.19 5.44 3.84 

Australasia 1,667 11.07 17.14 2.53 5.38 1.42 11.31 3.32 1.46 

Europe 5,385 6.58 9.59 2.52 4.68 6.47 7.34 2.36 2.78 

Panel B: Firm-characterized panels 

MV1 11,025 8.11 15.29 2.29 7.48 3.91 9.89 3.58 2.85 

MV2 11,025 6.90 10.48 2.22 4.20 6.75 8.35 4.60 3.76 

MV3 11,025 7.28 9.23 2.41 3.89 7.23 7.25 4.08 3.77 

FA1 11,025 9.84 15.44 2.20 6.62 5.43 9.02 4.43 3.45 

FA2 11,025 8.09 13.11 2.23 5.33 5.99 9.03 4.22 3.39 

FA3 11,025 6.29 8.56 2.40 4.56 6.63 7.86 3.64 3.63 

BM1 11,025 7.95 12.79 3.84 8.27 5.80 10.21 4.24 3.55 

BM2 11,025 7.49 10.47 2.30 3.35 6.93 7.84 4.01 3.52 

BM3 11,025 6.71 11.00 1.18 2.75 5.68 7.43 4.01 3.45 

TV1 11,025 6.76 11.59 1.88 5.62 5.44 8.60 3.26 2.96 

TV2 11,025 7.39 11.74 2.18 4.75 5.85 8.77 3.78 3.23 

TV3 11,025 7.81 10.75 2.86 5.05 7.11 8.07 5.24 3.96 

VO1 11,025 6.62 9.22 2.34 4.17 7.07 7.60 3.69 3.50 

VO2 11,025 6.87 9.75 2.34 4.19 6.84 7.94 4.59 3.84 

VO3 11,025 8.75 14.71 2.27 6.79 4.34 9.78 4.00 3.10 
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Table III: Univariate analysis 

This table reports the average value of corporate investment in the years with high crude oil price 

uncertainty versus the years with low crude oil price uncertainty. High crude oil price uncertainty is 

the years when OILVOL greater than its median over the sample period and it is low crude oil price 

uncertainty otherwise. The difference (high minus low) and t-statistic for the null hypothesis that the 

difference is equal zero are also reported. 

 High Uncertainty Low Uncertainty Difference t-statistic 

Panel A: Aggregate market panels 

Global 7.101 7.507 -0.406*** -11.058 

Developed 6.758 7.284 -0.526*** -10.512 

Emerging 7.599 7.794 -0.195*** -3.642 

Africa 8.149 7.539 0.610** 2.092 

Americas 7.757 8.994 -1.237*** -13.746 

Asia 6.563 6.854 -0.292*** -6.647 

Australasia 10.296 11.512 -1.216*** -4.490 

Europe 6.912 6.376 0.536*** 7.375 

Panel B: Firm-characterized panels 

MV1 7.429 8.481 -1.052*** -10.238 

MV2 6.728 7.000 -0.272*** -4.563 

MV3 7.202 7.332 -0.129*** -2.884 

FA1 9.205 10.119 -0.914*** -6.578 

FA2 7.915 8.185 -0.270*** -3.436 

FA3 6.341 6.256 0.085** 2.316 

BM1 7.569 8.181 -0.612*** -7.793 

BM2 7.383 7.559 -0.176*** -3.209 

BM3 6.410 6.889 -0.480*** -7.876 

TV1 6.459 6.939 -0.480*** -7.032 

TV2 7.094 7.567 -0.472*** -7.143 

TV3 7.632 7.922 -0.291*** -5.073 

VO1 6.353 6.787 -0.434*** -8.215 

VO2 6.849 6.891 -0.042 -0.838 

VO3 8.269 9.038 -0.769*** -8.760 
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Table IV: Granger causality test 

This table reports the F-statistic and p-value of the Granger causality test with the null hypothesis that 

oil uncertainty does not Granger cause corporate investment. 

 F-statistic p-value 

Panel A: Aggregate market panels 

Global 125.227 0.000 

Developed 120.570 0.000 

Emerging 13.050 0.000 

Africa 1.259 0.262 

Americas 66.215 0.000 

Asia 10.996 0.001 

Australasia 3.247 0.072 

Europe 94.589 0.000 

Panel B: Firm-characterized panels 

MV1 36.838 0.000 

MV2 31.773 0.000 

MV3 115.824 0.000 

FA1 47.901 0.000 

FA2 56.726 0.000 

FA3 168.661 0.000 

BM1 19.309 0.000 

BM2 66.080 0.000 

BM3 50.577 0.000 

TV1 56.672 0.000 

TV2 55.932 0.000 

TV3 17.598 0.000 

VO1 73.529 0.000 

VO2 31.009 0.000 

VO3 46.427 0.000 
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Table V: Estimation results  

This table reports the regression results of crude oil price uncertainty influence on corporate investment. The regression model takes the following form: 

𝐼𝑁𝑉𝑖,𝑡 =  𝛼 + 𝛽1𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 + 𝛽2𝑄𝑖,𝑡−1 + 𝛽3𝐶𝐹𝑖,𝑡 + 𝛽4𝐺𝐷𝑃𝑖,𝑡−1 + 𝜀𝑖,𝑡 

The coefficient and its t-statistic are reported. The regression controls for the firm and year fixed effects and t-statistics are corrected for clustering of the 

residual at the firm level. *, **, and *** denote significance at the 10%, 5% and 1% levels, respectively. 
 𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 𝑄𝑖,𝑡−1 𝐶𝐹𝑖,𝑡 𝐺𝐷𝑃𝑖,𝑡−1 𝛼 

R̅2 
 Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic Coefficient t-statistic 

Panel A: Aggregate market panels 

Global -0.487*** -16.86 0.106*** 14.78 0.070*** 17.62 0.095*** 12.45 15.193*** 21.80 0.344 

Developed -0.452*** -14.89 0.081*** 9.30 0.051*** 9.43 0.074*** 3.87 14.781*** 20.31 0.382 

Emerging -0.362*** -2.86 0.171*** 13.72 0.092*** 16.23 0.066*** 8.39 11.841*** 3.85 0.283 

Africa -0.258* -1.88 0.124** 1.98 0.080*** 2.65 0.009 0.65 10.134*** 3.18 0.322 

Americas -0.543*** -12.60 0.068*** 6.48 0.056*** 8.01 0.165*** 4.93 16.788*** 16.38 0.364 

Asia -0.401*** -9.69 0.166*** 13.62 0.105*** 19.72 0.121*** 9.31 12.223*** 12.12 0.312 

Australasia -0.697*** -2.60 0.126*** 3.87 -0.011 -0.59 0.160 0.91 23.215*** 3.53 0.354 

Europe -0.270*** -5.52 0.094*** 5.84 0.043*** 5.01 0.119*** 4.99 10.131*** 8.62 0.318 

Panel B: Firm-characterized panels 

MV1 -0.999* -1.89 0.057*** 5.14 0.022*** 2.76 0.039** 2.22 28.695** 2.23 0.283 

MV2 -0.448*** -7.13 0.154*** 10.94 0.086*** 13.20 0.063*** 4.93 13.857*** 9.10 0.327 

MV3 -0.444*** -15.11 0.164*** 15.54 0.102*** 17.39 0.150*** 13.33 13.526*** 19.12 0.421 

FA1 0.457*** 10.00 0.056** 2.16 0.074*** 4.03 -0.071* -1.90 -6.425*** -5.11 0.311 

FA2 0.209*** 4.28 0.113*** 9.03 0.048*** 6.55 0.035** 2.42 -0.933 -0.77 0.318 

FA3 -0.380*** -13.46 0.101*** 12.09 0.077*** 17.12 0.125*** 12.88 12.436*** 18.26 0.334 

BM1 -0.654*** -9.40 0.057*** 7.00 0.061*** 8.44 0.125*** 6.04 19.513*** 11.62 0.309 

BM2 -0.415*** -12.52 0.190*** 11.36 0.073*** 11.59 0.101*** 9.13 13.453*** 16.91 0.377 

BM3 -0.389*** -7.07 0.341*** 10.71 0.072*** 10.39 0.058*** 4.82 12.317*** 9.23 0.344 

TV1 -0.477*** -4.49 0.071*** 5.51 0.049*** 6.85 0.115*** 7.39 15.002*** 5.81 0.320 

TV2 -0.418*** -12.39 0.107*** 8.14 0.069*** 10.20 0.077*** 6.66 13.646*** 16.86 0.348 

TV3 -0.522*** -13.48 0.136*** 11.96 0.090*** 13.19 0.110*** 8.51 15.777*** 16.95 0.358 

VO1 -0.399*** -12.43 0.085*** 5.84 0.062*** 8.58 0.092*** 6.88 13.028*** 16.93 0.433 

VO2 -0.478*** -7.27 0.136*** 12.03 0.080*** 14.29 0.098*** 9.50 14.549*** 9.13 0.344 

VO3 -0.670*** -6.01 0.089*** 8.63 0.061*** 8.71 0.093*** 5.50 20.218*** 7.48 0.304 
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Table VI: Crude oil producers versus consumers  

This table reports the effect of crude oil producing industry and country on the relationship between crude 

oil price uncertainty and corporate investment. The regression models take the following forms: 

𝐼𝑁𝑉𝑖,𝑡 =  𝛼 + 𝛽1𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 + 𝛽2𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 ∗ 𝑃𝑅𝑂𝐷𝑈𝐶𝐸𝑅_𝐼𝑁𝐷𝑈𝑆𝑇𝑅𝑌𝑖 + 𝛽3𝑄𝑖,𝑡−1 + 𝛽4𝐶𝐹𝑖,𝑡

+ 𝛽5𝐺𝐷𝑃𝑖,𝑡−1 + 𝜀𝑖,𝑡 

𝐼𝑁𝑉𝑖,𝑡 =  𝛼 + 𝛽1𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 + 𝛽2𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 ∗ 𝑃𝑅𝑂𝐷𝑈𝐶𝐸𝑅_𝐶𝑂𝑈𝑁𝑇𝑅𝑌𝑖 + 𝛽3𝑄𝑖,𝑡−1 + 𝛽4𝐶𝐹𝑖,𝑡

+ 𝛽5𝐺𝐷𝑃𝑖,𝑡−1 + 𝜀𝑖,𝑡 

The coefficient 𝛽1 and 𝛽2 and their t-statistics are reported. The regressions control for the firm and year 

fixed effects and t-statistics are corrected for clustering of the residual at the firm level. *, **, and *** 

denote significance at the 10%, 5% and 1% levels, respectively. 

 𝑃𝑅𝑂𝐷𝑈𝐶𝐸𝑅_𝐼𝑁𝐷𝑈𝑆𝑇𝑅𝑌 𝑃𝑅𝑂𝐷𝑈𝐶𝐸𝑅_𝐶𝑂𝑈𝑁𝑇𝑅𝑌 
 𝛽1 𝛽2 𝛽1 𝛽2 

Panel A: Aggregate market panels 

Global -0.484*** -16.66 -0.038*** -3.21 -0.488* -11.09 -0.005* -7.59 

Developed -0.447*** -14.62 -0.053*** -3.81 -0.451*** -14.87 0.008 1.11 

Emerging -0.362*** -2.86 0.036 1.03 -0.365*** -2.88 -0.019*** -3.35 

Africa -0.258* -1.88 -0.017 -0.24 -0.252*** -13.78 -0.007 -1.27 

Americas -0.538*** -12.35 -0.065*** -3.50 -0.545*** -12.63 0.005 0.44 

Asia -0.401*** -9.68 0.052 1.59 -0.402*** -9.72 -0.015** -2.33 

Australasia -0.700*** -2.61 -0.078* -1.82 --- --- --- --- 

Europe -0.270*** -5.52 0.003 0.16 -0.273*** -5.58 -0.011* -1.84 

Panel B: Firm-characterized panels 

MV1 -0.987* -1.86 -0.086*** -2.96 -0.993* -1.88 0.017 1.63 

MV2 -0.448*** -7.14 0.009 0.29 -0.449*** -5.56 -0.011* -1.89 

MV3 -0.442*** -14.97 -0.026** -2.18 -0.446*** -15.19 -0.021*** -3.64 

FA1 0.457*** 10.00 0.010 0.22 0.456*** 10.00 0.022 0.95 

FA2 0.210*** 4.29 -0.046** -2.15 0.210*** 4.30 -0.015* -1.84 

FA3 -0.376*** -13.22 -0.048*** -3.83 -0.382*** -13.52 -0.014*** -2.91 

BM1 -0.654*** -9.38 -0.026 -0.85 -0.654*** -9.40 0.000 -0.02 

BM2 -0.411*** -12.24 -0.047*** -3.22 -0.417*** -12.58 -0.015* -1.91 

BM3 -0.385*** -7.04 -0.034 -1.47 -0.389*** -7.07 0.000 0.03 

TV1 -0.475*** -4.46 -0.026 -0.90 -0.475*** -4.47 0.013 1.26 

TV2 -0.417*** -12.43 -0.062** -2.55 -0.418*** -12.38 0.002 0.30 

TV3 -0.519*** -13.32 -0.029** -2.11 -0.525*** -13.58 -0.032*** -4.94 

VO1 -0.398*** -12.36 -0.012 -0.77 -0.400*** -16.69 0.007 1.55 

VO2 -0.473*** -7.15 -0.039** -2.32 -0.479*** -7.28 -0.005 -0.89 

VO3 -0.665*** -5.75 -0.048** -2.21 -0.675*** -6.05 -0.019* -1.89 
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Table VII: Effect of global financial crisis 

This table reports the effect of the global financial crisis on the relationship between crude oil price 

uncertainty and corporate investment. The regression model takes the following form: 

𝐼𝑁𝑉𝑖,𝑡 =  𝛼 + 𝛽1𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 + 𝛽2𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 ∗ 𝐶𝑅𝐼𝑆𝐼𝑆𝑡−1 + 𝛽3𝑄𝑖,𝑡−1 + 𝛽4𝐶𝐹𝑖,𝑡 + 𝛽5𝐺𝐷𝑃𝑖,𝑡−1 + 𝜀𝑖,𝑡 

The coefficient 𝛽1 and 𝛽2 and their t-statistic are reported. The regressions control for the firm and year 

fixed effects and t-statistics are corrected for clustering of the residual at the firm level. *, **, and *** 

denote significance at the 10%, 5% and 1% levels, respectively. 
 𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 ∗ 𝐶𝑅𝐼𝑆𝐼𝑆𝑡−1 

R̅2 
 Coefficient t-statistic Coefficient t-statistic 

Panel A: Aggregate market panels 

Global -0.487*** -16.86 0.305*** 18.87 0.344 

Developed -0.452*** -14.89 0.276*** 16.30 0.382 

Emerging -0.362*** -2.86 0.241*** 3.44 0.283 

Africa -0.258* -1.88 0.173** 2.12 0.322 

Americas -0.543*** -12.60 0.354*** 14.50 0.364 

Asia -0.401*** -9.69 0.256*** 11.17 0.312 

Australasia -0.697*** -2.60 0.459*** 3.08 0.354 

Europe -0.270*** -5.52 0.161*** 5.85 0.318 

Panel B: Firm-characterized panels 

MV1 -0.999* -1.89 0.598** 2.04 0.283 

MV2 -0.448*** -7.13 0.276*** 7.93 0.327 

MV3 -0.444*** -15.11 0.280*** 17.14 0.421 

FA1 -0.148*** -4.94 0.346*** 10.74 0.311 

FA2 0.209*** 4.28 -0.081*** -2.98 0.318 

FA3 -0.380*** -13.46 0.227*** 14.44 0.334 

BM1 -0.654*** -9.40 0.401*** 10.31 0.309 

BM2 -0.415*** -12.52 0.264*** 14.13 0.377 

BM3 -0.389*** -7.07 0.249*** 8.11 0.344 

TV1 -0.477*** -4.49 0.296*** 5.02 0.320 

TV2 -0.418*** -12.39 0.265*** 13.79 0.348 

TV3 -0.522*** -13.48 0.329*** 15.18 0.358 

VO1 -0.399*** -12.43 0.245*** 13.62 0.433 

VO2 -0.478*** -7.27 0.295*** 8.10 0.344 

VO3 -0.670*** -6.01 0.423*** 6.82 0.304 
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Table VIII: Effect of market volatility phases 

This table reports the effect of market volatility phases on the relationship between crude oil price 

uncertainty and corporate investment. The regression model takes the following form: 

𝐼𝑁𝑉𝑖,𝑡 =  𝛼 + 𝛽1𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 + 𝛽2𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 ∗ 𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐸𝑡−1 + 𝛽3𝑄𝑖,𝑡−1 + 𝛽4𝐶𝐹𝑖,𝑡 + 𝛽5𝐺𝐷𝑃𝑖,𝑡−1 + 𝜀𝑖,𝑡 

The coefficient 𝛽1 and 𝛽2 and their t-statistic are reported. The regressions control for the firm and year 

fixed effects and t-statistics are corrected for clustering of the residual at the firm level. *, **, and *** 

denote significance at the 10%, 5% and 1% levels, respectively. 
 𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 𝑂𝐼𝐿𝑉𝑂𝐿𝑡−1 ∗ 𝑉𝑂𝐿𝐴𝑇𝐼𝐿𝐸𝑡−1 

R̅2 
 Coefficient t-statistic Coefficient t-statistic 

Panel A: Aggregate market panels 

Global -0.417*** -15.43 -0.070*** -20.78 0.344 

Developed -0.394*** -13.97 -0.058*** -11.95 0.382 

Emerging -0.290** -2.44 -0.072*** -8.31 0.283 

Africa -0.203 -1.64 -0.054* -1.93 0.322 

Americas -0.461*** -11.62 -0.082*** -9.13 0.364 

Asia -0.336*** -8.69 -0.065*** -15.94 0.312 

Australasia -0.575** -2.30 -0.122*** -4.28 0.354 

Europe -0.238*** -5.21 -0.032*** -4.64 0.318 

Panel B: Firm-characterized panels 

MV1 -0.880* -1.77 -0.119*** -3.49 0.283 

MV2 -0.387*** -6.58 -0.061*** -10.66 0.327 

MV3 -0.380*** -13.79 -0.065*** -19.66 0.421 

FA1 0.197*** 6.96 -0.346*** -10.74 0.311 

FA2 0.234*** 5.06 -0.025*** -4.33 0.318 

FA3 -0.335*** -12.67 -0.045*** -13.83 0.334 

BM1 -0.568*** -8.73 -0.086*** -10.84 0.309 

BM2 -0.349*** -11.26 -0.066*** -13.81 0.377 

BM3 -0.328*** -6.36 -0.061*** -11.01 0.344 

TV1 -0.415*** -4.17 -0.062*** -7.02 0.320 

TV2 -0.354*** -11.26 -0.064*** -11.50 0.348 

TV3 -0.442*** -12.21 -0.079*** -16.70 0.358 

VO1 -0.347*** -11.58 -0.052*** -11.50 0.433 

VO2 -0.405*** -6.57 -0.073*** -12.99 0.344 

VO3 -0.576*** -5.51 -0.094*** -9.61 0.304 
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Abstract 

This study examines the impact of exchange rate volatility and oil price volatility on Malaysia’s 

bilateral total export and on sub-categories of Malaysia’s bilateral exports with China. Exchange 

rate volatility and oil price volatility are estimated by a stochastic volatility model. The 

autoregressive distributed lag (ARDL) models are used to examine the impact of exchange rate 

volatility and oil price volatility on Malaysia’s bilateral exports. Exchange rate volatility and oil 

price volatility in many cases are found to have significant impact on Malaysia’s sub-categories of 

Malaysia’s bilateral exports in the short run and long run.  
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Perak, 7th -8th November 2017. 
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1. Introduction 

Volatility implies uncertainty and risk, which can adversely influence exports. Volatility can be 

due to exchange rate and other factor such as oil price. Generally, exchange rate is volatile for 

countries adopt a flexible or managed exchange system after the breakdown of the Bretton Woods 

system in 1973. A risk averse exporter would reduce exports with increase in exchange rate 

volatility (De Grauwe, 1988). Thus, exchange rate volatility discourages exports (Asteriou, 

Masatci and Pılbeam, 2016; Chi and Cheng, 2016; Bahmani-Oskooee and Aftab, 2017). 

Conversely, a few study reports that exchange rate volatility has a positive impact on exports (De 

Grauwe, 1988). Several studies report that there is no significant impact of exchange rate volatility 

on exports (Bahmani-Oskooee, Iqbal and Salam, 2016). This may due to amongst other inelasticity 

of export demand or incomplete exchange rate pass-through. The impact of exchange rate volatility 

on exports is actively researched (Aftab, et al. 2016; Pino, Tas and Sharma, 2016; Soleymani, 

Chua and Hamat, 2017). 

 

Oil is an important source of energy in economy. The world oil price highly fluctuated in the 

2010s. The fluctuation of the world oil price has adversely impact on the real and financial sectors 

in economy (Riggi and Venditti, 2015; Diaz, Molero and De Gracia, 2016). Therefore, export 

would be adversely affected when the real and financial sectors in economy had been adversely 

affected. Oil price shock can reduce export duration. Wang, Zhu and Wang (2017) find that oil 

price shock has significantly negative impact on China’s export duration. Oil price shock reduces 

export duration in non-energy intensive industries more than in energy intensive industries. 

Moreover, oil price shock influences non-processing firms more than processing firms. There are 

many studies reported the negative impact of oil price shock on stock returns (Singhal and Ghosh, 

2016) or the impact of oil price shock and oil price volatility on stock returns (Diaz, Molero and 

De Gracia, 2016; Luo and Qin, 2017). The impact of oil price shock on economy can be 

asymmetric, that is, an increase in oil price shock has a more significant impact on economy than 

a decrease in oil price shock on economy (Bastianin, Conti and Manera, 2016).  

 

This study examines the impact of exchange rate volatility and oil price volatility on Malaysia’s 

bilateral total export and sub-categories of Malaysia’s bilateral exports by standard international 

trade code (SITC) from 0 to 9 with China. Thus, this study provides some evidence of the impact 

of exchange rate volatility and oil price volatility on bilateral total export and sub-categories of 

bilateral exports. The impact of exchange rate volatility and oil price volatility on bilateral total 

export and sub-categories of bilateral exports can be different due to different degree of sensitivity 

of industries to volatility. Moreover, there are not many studies examined the impact of oil price 

volatility on bilateral exports of Malaysia with China. Exchange rate volatility and oil price 

volatility are estimated by a stochastic volatility model (Chan and Hsiao, 2014; Chan and Grant, 

2016). The stochastic volatility model is selected from a group of stochastic volatility models. The 

stochastic volatility models are demonstrated to be good models in estimating volatility. Chan and 

Grant (2016) amongst other estimate oil price volatility using the stochastic volatility models. The 
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measurement of volatility can be a matter of the significant impact of exchange rate volatility and 

oil price volatility on bilateral exports (Chi and Cheng, 2016). There are not many studies 

examined the impact of exchange rate volatility on exports using a stochastic volatility model. The 

asymmetric autoregressive distributed lag (ARDL) approach is used to investigate the positive and 

negative impacts of exchange rate volatility and oil price volatility on bilateral exports (Choudhry 

and Hassan, 2015). Hence, this study provides some evidence of the importance of the asymmetric 

impact of exchange rate volatility and oil price volatility on bilateral exports.  

 

Exchange rate volatility and oil price volatility are found to have significant impact on some 

Malaysia’s bilateral exports in the short run and long run and their impact differ across sub-

categories of bilateral exports. Positive exchange rate volatility, negative exchange rate volatility, 

positive oil price volatility and negative oil price volatility are also found to have significant impact 

on Malaysia’s bilateral exports in the short run and long run although their impact differ across 

sub-categories of bilateral exports.  

 

2. Literature Review 

Exchange rate volatility is found to have negative significant impact on exports. However, the 

impact of exchange rate volatility varies across categories of exports. Aftab, et al. (2016) examine 

the impact of exchange rate volatility on Malaysia’s bilateral trade with European Union using 

industry level monthly data for the period from January, 2000 to December 2013. The results of 

the ARDL approach show that exchange rate volatility is found to have significant impact on many 

imports and exports in the short run and a few imports and exports of Malaysia’s bilateral trade is 

found to have significant impact in the long run. Furthermore, the global financial crisis, 2007-

2008 is found to have significant impact on Malaysia’s bilateral trade with European Union. 

Bahmani-Oskooee and Aftab (2017) investigate the asymmetric impact of exchange rate volatility 

on 54 Malaysia’s bilateral exports to the US and 63 Malaysia’s bilateral imports from the US using 

the ARDL approach. The study reports that the asymmetric impact of exchange rate volatility is 

found to be significant for about 1/3 of the bilateral imports and exports between the US and 

Malaysia. 

 

Soleymani, Chua and Hamat (2017) analyse the impact of real exchange rate volatility and third 

country exchange rate volatility on trade of four countries of Association of South East Asian 

(ASEAN), namely Indonesia, Malaysia, Singapore and Thailand using annual data for the period 

from 1980 to 2012. The results of the ARDL approach demonstrate that real exchange rate 

volatility has a significant negative impact on 15 export and four import models in the short run 

and long run. The impact of four countries of ASEAN’s currency against yuan exchange rate 

volatility respectively dominates the effect of the third country exchange rate volatility on four 

countries of ASEAN’s trade. 
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Asteriou, Masatci and Pılbeam (2016) probe the impact of nominal and real effective exchange 

rate volatility on export and import volumes for Mexico, Indonesia, Nigeria, and Turkey using 

monthly data for the period from January, 1995 to December, 2012. Exchange rate volatility is 

estimated by the generalized autoregressive conditional heteroskedasticity (GARCH) models. The 

ARDL approach and Granger causality models are used. In the long run, there is no relationship 

between exchange rate volatility and international trade, except for Turkey but the impact of 

exchange rate volatility is small. In the short run, there is a significant causal relationship from 

exchange rate volatility to import and export demand for Indonesia and Mexico. For Nigeria, 

unidirectional causality from export demand to exchange rate volatility is found and no causality 

between exchange rate volatility and import/export demand is found for Turkey. 

 

The impact of exchange rate volatility on export varies across countries. Chi and Cheng (2016) 

examine the impact of exchange rate volatility on Australia’s maritime export volume with its 

Asian trading partners, namely China, Japan, Republic of Korea, Taiwan, India, Indonesia and 

Malaysia respectively using quarterly data for the period from quarter 1, 2000 to quarter 2, 2013. 

Two measures of exchange rate volatility are used, namely the (GARCH) (1,1) and mean adjusted 

relative change measures. Exchange rate volatility is found to have a significant negative impact 

on maritime export volume in the long run but the impact is found to vary across country pairs. 

Moreover, different measure of exchange rate volatility can produce different impact.  

 

Pino, Tas and Sharma (2016) investigate the impact of exchange rate volatility on exports of 

Indonesia, Malaysia, Korea, Singapore, Thailand, and the Philippines for the period from 1974 to 

2011. Exchange rate volatility is derived from an autoregressive conditional heteroscedasticity 

(ARCH) model, a GARCH model and a moving-average standard deviation measure. The results 

show that exchange rate volatility is found to have a significant impact on exports in the short run 

and long run. The negative impact of exchange rate volatility is dominated for all countries 

examined, except for Singapore. However, the impact of exchange rate volatility varies across 

countries in the short run. The conclusions are about the same to different measurements of 

exchange rate volatility. 

 

The impact of exchange rate volatility can be different across measurements of exchange rate 

volatility. Wang and Zhu (2016) inspect the impact of Reminbi (RMB) exchange rate on trade in 

China using the spatial panel model and Markov Chain Monte Carlo estimation method for the 

period from quarter 1, 1993 to quarter 3, 2013. The results reveal that the RMB against the US 

dollar exchange rate is widely used in trade settlement has more significant impact on Chinese 

export. One per cent appreciation of the RMB against the US dollar exchange rate will lead to 

about 1.532 per cent decline in Chinese export. Conversely, one per cent appreciation of the RMB 

against the nominal effective exchange rate will lead to about 0.42 per cent decline in Chinese 



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

90 

 

export. One per cent increases in the RMB against the US dollar exchange rate volatility will lead 

to about 0.579 per cent decline in Chinese export. China should improve the foreign exchange 

derivatives market to reduce the adverse impact of exchange rate volatility.  

 

There are studies found insignificant impact of exchange rate volatility on exports. Bahmani-

Oskooee, Iqbal and Salam (2016) study the impact of exchange rate volatility on 44 Pakistani 

export industries to Japan and 60 Pakistani import industries from Japan using the ARDL approach 

for annual data from 1980 to 2014. The results show that exchange rate volatility is mainly found 

not to have significant impact on trade between Pakistan and Japan in the short run and long run. 

Bouoiyour and Selmi (2016) survey literature of exchange rate volatility on trade using the meta-

regression analysis on 41 studies. The results show exchange rate volatility impact to have a 

significant impact on trade after correction of publication bias, that is, the result is heterogeneity 

with respect to model specifications, samples, time horizons and countries’ characteristics.  

 

The impact of exchange rate volatility can be sensitive to countries included in the examination. 

Vieira and MacDonald (2016) investigate the impact of real effective exchange rate (REER) 

volatility and the global financial crisis, 2008 on export volume using the system generalized 

method of moments (GMM) in a panel data of 106 developing and emerging economies for annual 

data from 2000 to 2011. The results show that an increase in REER volatility will lead to a decrease 

in export volume whereas a decrease in REER volatility will lead to an increase in export volume. 

However, the conclusions are not the same when the oil export countries are excluded from the 

estimation. The global financial crisis is found to have positive impact export volume. REER and 

income are inelastic to export volume. Exchange rate volatility shall be reduced to increase export 

volume.  

 

In a summary, the impact of exchange rate volatility on exports is actively researched. The ARDL 

approach is widely used in the estimation. The measurement of exchange rate volatility is mostly 

non-stochastic such as estimated by an ARCH model or a moving-average standard deviation 

measure. The aggregated data and bilateral data are used to examine the impact of exchange rate 

volatility on exports. Generally, exchange rate volatility is found to have a significant impact on 

export. However, the impact of exchange rate volatility can be varied across categories of exports, 

across countries and across measurements of exchange rate volatility. There are several studies 

found insignificant impact of exchange rate volatility on exports.  

 

3. Bilateral Exports of Malaysia 

 

China was the second largest for exports of Malaysia. In 2015, exports of Malaysia to China were 

about 13.1 per cent of total exports (Table 1). The main exports of Malaysia to China were SITC 
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7, SITC 3 and SITC 5. The exports values of SITC 7, SITC 3 and SITC 5 were Malaysian ringgit 

(RM) 46,595.0 million, RM14,640.6 million and RM10,817.9 million or about 45.9 per cent, about 

14.4 per cent and about 10.7 per cent of exports Malaysia to China, respectively (Malaysia 

External Trade Statistics System, Department of Statistics Malaysia).  

 

The main components of exports of SITC 7 are thermionic valves and tubes, photocells and parts 

thereof, automatic data processing machines and units thereof, and telecommunications 

equipment. The main components of exports of SITC 3 are natural gas, whether or not liquefied, 

petroleum products, refined and petroleum oils, crude and crude oils obtained from bituminous 

minerals. Finally, the main components of exports of SITC 5 are polymer of ethylene in primary 

forms, other plastics in primary forms, alcohols, phenols, phenol- alcohols and their derivatives, 

and radio-active and associated materials (Malaysia External Trade Statistics System, Department 

of Statistics Malaysia). 

 

 [Insert Table 1 about here] 

 

4. Data and Methodology 

 

Bilateral total export (xt,t) is the sum of export values of SITC from 0 to 9 divided by total export 

price index (2005 = 100). Bilateral exports of SITC from 0 to 9 (xi,t, i = 0, …, 9) are export values 

of SITC from 0 to 9 divided by export price indexes (2005 = 100) of SITC from 0 to 9, respectively. 

SITC 0 is food and live animals. SITC 1 is beverages and tobacco. SITC 2 is crude materials, 

inedible, except fuels. SITC 3 is mineral fuels, lubricants and related materials. SITC 4 is animal 

and vegetable oils, fats and waxes. SITC 5 is chemicals and related products. SITC 6 is 

manufactured goods classified by material. SITC 7 is machinery and transport equipment. SITC 8 

is miscellaneous manufactured articles. SITC 9 is commodities and transactions not classified 

elsewhere in SITC. Exchange rate (et) is the Malaysian ringgit (RM) against renminbi multiplied 

by relative consumer price index (CPI, 2005 = 100) of Malaysia over CPI (2005 = 100) of China. 

Exchange rate volatility (vt) or oil price volatility (ot) is exchange rate or oil price (3 spot price 

index, 2005 = 100) estimated by a group of stochastic volatility models, namely the standard 

stochastic volatility (SV) model, the stochastic volatility with a second order of autoregressive log 

volatility process (SV2) model, the stochastic volatility in mean (SV-M) model, the stochastic 

volatility with moving average (SVMA) model and the stochastic volatility with t-distribution 

(SVT) model. Foreign demand (yt) is expressed by industrial value-added of China (2005 = 100). 

Total export, export values of SITC from 0 to 9, export price indexes and export values of the 

trading partner of Malaysia were obtained from Malaysia External Trade Statistics System, 

Department of Statistics Malaysia. Industrial value-added of China was obtained from the website 

of National Bureau of Statistics of China. Exchange rates were obtained from Monthly Statistical 

Bulletin, Central Bank of Malaysia. Oil price was obtained from International Financial Statistics, 

International Monetary Fund. The data were seasonal adjusted using the census X13 multiplicative 
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or additive method and were transformed into the logarithm. The sample period is from January, 

2010 to July, 2016. The beginning of sample period is restricted by the availability of the monthly 

export price indexes in Malaysia, which begins from January, 2010. 

 

The standard stochastic volatility (SV) model is expressed as follows: 

 

Model 1           𝑦𝑡 =  + 𝜖𝑡
𝑦

, 𝜖𝑡
𝑦

~𝑁(0, 𝑒𝑥𝑝ℎ𝑡) 

ℎ𝑡 = 
ℎ

+ 𝜙ℎ(ℎ𝑡−1 − 
ℎ

) + 𝜖𝑡
ℎ, 𝜖𝑡

ℎ~𝑁(0, 𝜔ℎ
2)   (1) 

 

where 𝑦𝑡  is ln 𝑒𝑡 , 𝑁  denotes normally distributed and 𝑒𝑥𝑝 denotes exponential. The logarithm 

volatility, ℎ𝑡 is assumed to follows a stationary autoregressive with order one process with |𝜙ℎ| < 

1 and unconditional mean, 
ℎ

. The process is initialised with ℎ𝑡 ~  𝑁(
ℎ

, 𝜔ℎ
2/(1 −  𝜙ℎ

2). 

 

The stochastic volatility with ℎ𝑡 follows a stationary autoregressive with order two process (SV2) 

model is expressed as follows:  

 

Model 2           𝑦𝑡 =  + 𝜖𝑡
𝑦

, 𝜖𝑡
𝑦

~𝑁(0, 𝑒𝑥𝑝ℎ𝑡) 

ℎ𝑡 = 
ℎ

+ 𝜙ℎ(ℎ𝑡−1 − 
ℎ

) + 𝜌ℎ(ℎ𝑡−2 − 
ℎ

) + 𝜖𝑡
ℎ, 𝜖𝑡

ℎ~𝑁(0, 𝜔ℎ
2) (2) 

 

where when 𝜌ℎ = 0, model 2 is reduced to model 1. 

 

The stochastic volatility in mean (SVM) model is expressed as follows: 

 

Model 3           𝑦𝑡 =  + 𝜆ℎ𝑡 + 𝜖𝑡
𝑦

, 𝜖𝑡
𝑦

~𝑁(0, 𝑒𝑥𝑝ℎ𝑡)  

ℎ𝑡 = 
ℎ

+ 𝜙ℎ(ℎ𝑡−1 − 
ℎ

) + 𝜖𝑡
ℎ, 𝜖𝑡

ℎ~𝑁(0, 𝜔ℎ
2)   (3) 

 

where 𝜆 captures the extent of volatility feedback and when 𝜆 = 0, the SVM model is reduced to 

the SV model. 

 

The stochastic volatility with t error (SVT) model is expressed as follows:  
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Model 4            𝑦𝑡 =  + 𝜖𝑡
𝑦

, 𝜖𝑡
𝑦

~𝑡𝑣(0, 𝑒𝑥𝑝ℎ𝑡) 

ℎ𝑡 = 
ℎ

+ 𝜙ℎ(ℎ𝑡−1 − 
ℎ

) + 𝜖𝑡
ℎ, 𝜖𝑡

ℎ~𝑁(0, 𝜔ℎ
2)   (4) 

 

The stochastic volatility with moving average (SVMA) model is expressed as follows:  

 

Model 5            𝑦𝑡 =  + 𝜖𝑡
𝑦

 

𝜖𝑡
𝑦

= 𝑢𝑡 + 𝜓𝑢𝑡−1, 𝑢𝑡~𝑁(0, 𝑒𝑥𝑝ℎ𝑡)     

ℎ𝑡 = 
ℎ

+ 𝜙ℎ(ℎ𝑡−1 − 
ℎ

) + 𝜖𝑡
ℎ, 𝜖𝑡

ℎ~𝑁(0, 𝜔ℎ
2)   (5) 

 

where u0 and |𝜓| < 1 (Chan and Hsiao, 2014). The marginal likelihood is used to select the best 

model.  

 

The export models to be estimated are specified as follows:  

 

Model 1 ln 𝑥𝑡 =  𝛽11ln 𝑒𝑡 + 𝛽12ln 𝑦𝑡 + 𝛽13𝑣𝑡 + 𝛽14𝑜𝑡 + 𝑢1,𝑡   (6) 

 

Model 2 ln 𝑥𝑡 =  𝛽21ln 𝑒𝑡 + 𝛽22ln 𝑦𝑡 + 𝛽23𝑣𝑡
+ + 𝛽24𝑣𝑡

− + 𝛽25𝑜𝑡
+ + 𝛽26𝑜𝑡

− + 𝑢2,𝑡  

           (7) 

 

where ln is logarithm,  xt  is bilateral exports, namely bilateral total export or bilateral exports of 

SITC from 0 to 9, et is exchange rate, yt is foreign demand, vt is exchange rate volatility, ot is oil 

price volatility,  𝑣𝑡
+ = ∑ ∆ 𝑣𝑗

+𝑡
𝑗=1 , ∆𝑣𝑡

+ = max  (∆𝑣𝑡, 0)  and  𝑣𝑡
− = ∑ ∆ 𝑣𝑗

−𝑡
𝑗=1 , ∆𝑣𝑡

− =

min  (∆𝑣𝑡, 0) are partial sum process of positive and negative changes in 𝑣𝑡 ,  𝑜𝑡
+ = ∑ ∆ 𝑜𝑗

+𝑡
𝑗=1 , 

∆𝑜𝑡
+ = max  (∆𝑜𝑡, 0)  and  𝑜𝑡

− = ∑ ∆ 𝑜𝑗
−𝑡

𝑗=1 , ∆𝑜𝑡
− = min  (∆𝑜𝑡, 0)  are partial sum process of 

positive and negative changes in 𝑜𝑡 and ui,t (i = 1, 2)  is a disturbance term (Schorderet, 2001; Shin, 

Yu and Greenwood-Nimmo, 2014; Choudhry and Hassan, 2015).  

 

The error correction models of the export models are as follows:  

 



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

94 

 

Model 1  ln 𝑥𝑡 =  𝛽30 + ∑ 𝛽31𝑖  ln 𝑒𝑡−𝑖
𝑎
𝑖=0 + ∑ 𝛽32𝑖  ln 𝑦𝑡−𝑖

𝑏
𝑖=0 + ∑ 𝛽33𝑖

𝑐
𝑖=0  𝑣𝑡−𝑖 

                   + ∑ 𝛽34𝑖
𝑑
𝑖=0  𝑜𝑡−𝑖 + ∑ 𝛽35𝑖

𝑓
𝑖=1  ln 𝑥𝑡−𝑖 +  𝛽36 𝑒𝑐𝑡−1 + 𝑢3,𝑡  

          (8) 

 

Model 2  ln 𝑥𝑡 = 𝛽40 + ∑ 𝛽41𝑖  ln 𝑒𝑡−𝑖
𝑎
𝑖=0 + ∑ 𝛽42𝑖  ln 𝑦𝑡−𝑖

𝑏
𝑖=0 + ∑ 𝛽43𝑖 ∆ 𝑣𝑡−𝑖

+𝑐
𝑖=0  

                                        + ∑ 𝛽44𝑖
𝑑
𝑖=0 ∆ 𝑣𝑡−𝑖

− + ∑ 𝛽45𝑖 ∆ 𝑜𝑡−𝑖
+𝑓

𝑖=0 + ∑ 𝛽46𝑖
𝑔
𝑖=0 ∆ 𝑜𝑡−𝑖

−   

                                        + ∑ 𝛽47𝑖
ℎ
𝑖=1  ln 𝑥𝑡−𝑖 + 𝛽48 𝑒𝑐𝑡−1 + 𝑢4,𝑡                                  

          (9) 

 

where  is the first difference operator,  ect-1 is an error correction term and ui,t (i = 3, 4)   is a 

disturbance term.  

 

5. Results and Discussions 

 

The results of the Dickey and Fuller unit root test statistic are reported in Table 2. The lag length 

used to compute the Dickey and Fuller unit root statistic is based on the Akaike information 

criterion. The Dickey and Fuller unit root test statistic shows that all the variables are non-

stationary in their levels but become stationary after taking the first differences, except Malaysia’s 

total export to China The variables in this study are the mixture of I(1) and I(0) variables. 

 

[Insert Table 2 about here] 

 

The results of the stochastic volatility models are given in Table 3. The estimations are based on 

the means of the 21000 draws from the posterior distribution using the Gibbs sampler after a burn-

in period of 1000 (Chan and Hsiao, 2014). The marginal likelihood is used to select the best 

stochastic volatility model. Exchange rate volatility is found the best estimated by the SVMA 

model. The SVM model is found the best to estimate oil price volatility. The Ljung-Box tests of 

the null hypothesis of no serial correlation in the standardised residuals are all not rejected. The 

McLeod-Li tests of the null hypothesis of no serial correlation in the squared standardised residuals 

are also all not rejected. The SVMA models is said to be good to capture the time-varying volatility 

of the data. The parameters estimated are found mainly to be statistically significant. The stochastic 

volatility process is highly persistent. The plots of exchange rate volatility, which is computed by 

the moving standard deviation with order three (MSD(3)) and estimated by the SVMA model are 

shown in Figure 1. Exchange rate volatility moves in the same direction. However, the exchange 

rate volatility estimated by the SVMA model tended to be non-stationary compared with exchange 

rate volatility computed by the MSD(3), which is stationary. This may imply that the SVMA model 

captures better the exchange rate volatility clustering. 
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[Insert Table 3 about here] 

 

[Insert Figure 1 about here] 

 

The ARDL bounds testing approach and the long run coefficients of the ARDL approach are given 

in Table 4. The ordinary least squares (OLS) estimator with Newey-West standard error is used 

when no-autocorrelation of the disturbance term is found to be statistically significant and the OLS 

estimator with Huber-White standard error is used when homoscedasticity of the disturbance term 

is found to be statistically significant. The Wald statistics are found to be statistically significant. 

Therefore, there are long-run relationships between exports and their determinants. Generally, 

exchange rate volatility has no significant long-run impact on Malaysia’s export to China, except 

export of SITC 8, that is, miscellaneous manufactured goods. Conversely, oil price volatility has 

significant long-run impact on Malaysia’s total export and exports of SITC 4, SITC 5, SITC 6, 

SITC 8 and SITC 9 to China.  

 

In the long run, positive exchange rate volatility and negative exchange rate volatility are found to 

have more significant impact than positive oil price volatility and negative oil price volatility on 

Malaysia’s exports to China. Positive exchange rate volatility is found to have significant impact 

on Malaysia’s total export and exports of SITC 0, SITC 1, SITC 2, SITC 3, SITC 5, SITC 7 and 

SITC 9 to China. Negative exchange rate volatility is found to have significant impact on 

Malaysia’s exports of SITC 1, SITC 2, SITC 3, SITC 4, SITC 5, SITC 6 and SITC 7 to China. 

Positive oil price volatility is found to have significant impact on Malaysia’s export of SITC 6 to 

China. Negative oil price volatility is found to have significant impact on Malaysia’s exports of 

SITC 4, SITC 8 and SITC 9 to China.  

 

[Insert Table 4 about here] 

 

The summary results of the error correction models are reported in Table 5. The OLS estimator 

with Newey-West standard error is used when no-autocorrelation of the disturbance term is found 

to be statistically significant and the OLS estimator with Huber-White standard error is used when 

homoscedasticity of the disturbance term is found to be statistically significant. The coefficients 

of the one lag of error correction terms are found to be less than one or about one and to have the 

expected negative signs and statistically significant. This implies the validity of an equilibrium 

relationship among the variables in the estimated model. The coefficients of exchange rate and 

foreign demand are found in many cases to be statistically significant. There are many cases of 

exchange rate volatility and oil price volatility found to have a significant impact on exports. 

Hence, some sectors of exports are sensitive to exchange rate volatility or oil price volatility whilst 

some sectors of exports are less sensitive to exchange rate volatility or oil price volatility. 

Moreover, some sectors of exports react negatively or positively to exchange rate volatility and oil 

price volatility, respectively. For Malaysia’s exports to China, exchange rate volatility has relative 

more significant impact on exports in the short run than in the long run. Exchange rate volatility 

is found to have significant impact on bilateral total export and exports of SITC 4 and SITC 7. Oil 
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price volatility is found to significant impact on exports of SITC 0, SITC 2, SITC 7, SITC 8 and 

SITC 9. Thus, many categories of bilateral exports are affected by exchange rate volatility. 

 

In the short run, positive and negative exchange rate volatility and positive and negative oil price 

volatility are mostly found to have significant impact on Malaysia’s exports to China. Positive 

exchange rate volatility is found to have significant impact on total export and exports of SITC 0, 

SITC 2, SITC 6, SITC 7, SITC 8 and SITC 9. Negative exchange rate volatility is found to have 

significant impact on exports of SITC 2, SITC 4, SITC 5 and SITC 8. Positive oil price volatility 

is found to have significant impact on exports of SITC 6 and SITC 9. Negative oil price volatility 

is found to significant impact on exports of SITC 0, SITC 4, SITC 5, SITC 7 and SITC 9.  

 

[Insert Table 5 about here] 

 

The finding that exchange rate volatility to have significant impact on exports is same with the 

findings such as Pino, Tas and Sharma (2016) and Bahmani-Oskooee and Aftab (2017), amongst 

other. Exchange rate volatility and oil price volatility have insignificant impact on exports can be 

due to incomplete transmission between exchange rate volatility or oil price volatility and export 

price because exporting firm absorbs lose temporarily to maintain its market share in foreign 

country (Gopinath, Itskhoki and Rigobon, 2010; Bandt and Razafindrabe, 2014: 64; Bernini and 

Tomasi, 2015; Choudhri, and Hakura, 2015). Also, there is no connection between exchange rate 

volatility and the real economy may be due to local currency pricing, heterogeneous international 

distribution of commodities and noise traders in the foreign exchange rate markets (Devereux and 

Engel, 2002).  

 

A more stable international environment would encourage export. It can be achieved through more 

effectively international cooperation to minimise international shocks. A more stable exchange 

rate and a more stable oil price would encourage exports. Nonetheless, exchange rate volatility is 

unlikely to be fully eliminated under flexible exchange rate regime. However, exchange rate 

volatility can be reduced or minimised through various methods of exchange rate risk hedging in 

the forward market, future market or money market. Exchange rate volatility can be an opportunity 

to exporters to obtain higher profits. Oil price shall be volatile under free market and therefore It 

is not easy to eliminate oil price volatility. A more diversified export can reduce overall shocks. 

Exporters from Malaysia can reduce their risks through a more diversified of their exports with 

more focus on exports to Association of Southeast Asian Nations Economic Community (AEC), 

which is not fully exploited by exporters of Malaysia. AEC can provide an alternative export 

market to exporters from Malaysia. 

 

6. Concluding Remarks 
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This study examines the impact of exchange rate volatility on Malaysia’s bilateral total export and 

sub-categories of Malaysia’s bilateral exports by SITC from 0 to 9 to China. Exchange rate 

volatility and oil price volatility are both found in many cases to have significant impact on 

Malaysia’s bilateral exports in the short run and long run although their impact differ across sub-

categories of bilateral exports. Moreover, positive exchange rate volatility, negative exchange rate 

volatility, positive oil price volatility and negative oil price volatility are found to have significant 

impact on Malaysia’s bilateral exports in the short run and long run although their impact differ 

across sub-categories of bilateral exports. Exchange rate volatility and oil price volatility can 

influence many categories of bilateral exports. A more stable international environment and a more 

stable exchange rate would encourage exports. It can be achieved more effectively through 

international cooperation to minimise those shocks. A more diversified export can reduce the 

impact of overall shocks on bilateral exports.  
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Figure 1 

Exchange Rate Volatility or Oil Price Volatility Computed by the MSD(3) and Estimated by the 

SV Model, Respectively, January, 2010 – July, 2016 
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Table 1 

Bilateral Exports of Malaysia, 2011-2015 (RM Million) 

 

 2011 2012 2013 2014 2015 

Singapore 88,191 

(12.6%) 

95,553 

(13.6%) 

100,257 

(13.9%) 

108,728 

(14.2%) 

108,388 

(13.9%) 

China 91,551 

(13.1%) 

88,793 

(12.6%) 

97,043 

(13.5%) 

92,286 

(12.1%) 

101,537 

(13.1%) 

The US 57,653 

(8.3%) 

60,791 

(8.7%) 

58,055 

(8.1%) 

64,405 

(8.4%) 

73,669 

(9.5%) 

Japan 81,368 

(11.7%) 

83,401 

(11.9%) 

79,197 

(11.0%) 

82,617 

(10.8%) 

72,683 

(9.4%) 

Korea 26,252 

(3.8%) 

25,368 

(3.6%) 

26,199 

(3.6%) 

27,941 

(3.7%) 

24,668 

(3.2%) 

Germany 18,456 

(2.6%) 

16,512 

(2.3%) 

17,859 

(2.5%) 

12,233 

(1.6%) 

19,639 

(2.5%) 

The UK 7,157 

(1.0%) 

6,848 

(1.0%) 

7,922 

(1.1%) 

5,923 

(0.8%) 

9,318 

(1.2%) 

Total Exports 697,862 702,641 719,992 765,417 777,355 

Source: MOF (2015, 2016). 

Note: Values in the parentheses are the percentages of the total exports. 
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Table 2 

The Results of the Dickey and Fuller Unit Root Test Statistic 

 

ln 𝑥𝑡,𝑡 -2.6485*(1) 

Δ ln 𝑥𝑡,𝑡 -14.9232***(0) 

ln 𝑥0,𝑡 -1.2120(2) 

Δ ln 𝑥0,𝑡 -9.2191***(1) 

ln 𝑥1,𝑡 -1.6659(2) 

Δ ln 𝑥1,𝑡 -7.3953***(2) 

ln 𝑥2,𝑡 -1.8799(2) 

Δ ln 𝑥2,𝑡 -11.3152***(0) 

ln 𝑥3,𝑡 -1.3520(1) 

Δ ln 𝑥3,𝑡 -19.7395***(0) 

ln 𝑥4,𝑡 -2.2086(2) 

Δ ln 𝑥4,𝑡 -8.7405***(1) 

ln 𝑥5,𝑡 -2.5316(2) 

Δ ln 𝑥5,𝑡 -9.4273***(1) 

ln 𝑥6,𝑡 -1.6628(2) 

Δ ln 𝑥6,𝑡 -11.9672***(0) 

ln 𝑥7,𝑡 -2.5145(3) 

Δ ln 𝑥7,𝑡 -16.6192***(0) 

ln 𝑥8,𝑡 -2.3269(1) 

Δ ln 𝑥8,𝑡 -14.6615***(0) 

ln 𝑥9,𝑡 -1.0295(2) 

Δ ln 𝑥9,𝑡 -8.5720***(1) 

ln 𝑒𝑡 -0.8245(0) 

Δ ln 𝑒𝑡 -6.8754***(0) 

ln 𝑦𝑡 -1.7425(0) 

Δ ln 𝑦𝑡 -9.3933***(1) 

𝑣𝑡 -0.5183(3) 

Δ 𝑣𝑡 -2.7993*(2) 

𝑜𝑡 -0.8756(1) 

Δ 𝑜𝑡 -2.9617**(0) 

Notes: xt,t is total export at time t. xi,t is export of SITC i at time t (i = 0, … , 9). et is exchange rate 

at time t. yt is foreign demand at time t. vt is exchange rate volatility estimated by the SVMA model 

at time t. ot is oil price volatility estimated by the SVM model at time t. The Dickey and Fuller unit 

root statistic is estimated based on the model including an intercept. Values in the parentheses are 

the lags used in the estimations. *** (**, *) denotes significance at the 1% (5%, 10%) level. 

Table 3:The Parameters Posterior Means of the SV Models, January, 2010 - July, 2016 

 China Oil Price 
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𝜇 -0.87 

(0.00) 

5.35 

(0.02) 

𝜇ℎ -4.11 

(2.81) 

-3.52 

(1.82) 

𝜙ℎ 0.99 

(0.02) 

0.98 

(0.01) 

𝜔ℎ
2 0.10 

(0.05) 

0.06 

(0.02) 

𝜌ℎ 0.73 

(0.06) 

- 

𝜆 - -36.31 

(6.39) 

ML 155.3 66.5 

Q(20) 115.22 

(24.98) 

47.42 

(18.94) 

Q2(20) 26.36 

(11.14) 

16.11 

(6.46) 

Notes: Exchange rate volatility is estimated by the SVMA model. Oil price volatility is estimated 

by the SVM model. ML denotes the marginal likelihood. Q(20) and Q2(20) denote the Ljung-

Box and McLeod-Li statistics of order 20 computed based on the standardised errors and squared 

standardised errors, respectively. Values in the parentheses are the standard deviations. 
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Table 4 
The Results of Bounds Testing Approach for Cointegration and the Long Run Coefficients of the ARDL Approach 

Model 1 

 ln xt,t ln x0,t ln x1,t ln x2,t ln x3,t ln x4,t 

Wald-

Statistic  7.2732@@@   7.9495@@@  15.9758@@@  6.0968@@@  12.7633@@@ 6.2568@@@ 

 ln x5,t ln x6,t ln x7,t ln x8,t ln x9,t  

Wald-

Statistic   6.6360@@@  6.1350@@@     12.0708@@@ 10.5881@@@  3.8930@  

 

 ln xt,t ln x0,t ln x1,t ln x2,t ln x3,t ln x4,t 

ln et 1.2416** 

(2.0615) 

2.9784*** 

(2.7905) 

0.5787 

(0.1862) 

3.8662** 

(2.6156) 

3.3711* 

(1.9843) 

0.7630 

(0.4401) 

ln yt  0.1250** 

(2.0358) 

-0.8501*** 

(-5.7375) 

-0.7865* 

(-1.9810) 

-0.2177 

(-0.9944) 

-0.8657*** 

(-5.5187) 

0.7588*** 

(2.9036) 

vt  2.3362 (1.6510) -5.5265 

(-1.4196) 

7.4943 

(0.8383) 

-3.6482 

(-0.6312) 

2.0283 

(0.5443) 

3.0888 

(0.4742) 

ot  -1.8838*** 

(-3.4823) 

-0.5175 

(-0.5702) 

-3.2753 

(-0.7878) 

1.2575 

(0.6960) 

-0.4813 

(-0.2598) 

-5.6256*** 

(-2.9470) 

Diagnostic Tests 

LM 4.1168@@ 1.4254 0.5911 0.9675 3.2102@@ 1.0854 

Reset  0.3912 5.5547@@ 0.0145 1.1479  5.1896@@ 0.4697 

Hetero 2.1570@  1.1223 5.5937@@@ 1.4055 0.8064 1.3429 

 

 ln x5,t ln x6,t ln x7,t ln x8,t ln x9,t 

ln et -0.2594 

(-0.2803) 

7.3060*** 

(3.3530) 

0.8506** 

(2.0074) 

-1.8691** 

(-2.1698) 

2.2173 

(0.9975) 

ln yt  -0.2087** 

(-2.0327) 

-0.0834 

(-0.3082) 

0.2076** 

(2.4888) 

-0.0504 

(-0.4771) 

-0.0978 

(-0.3492) 

vt 2.8189 

(0.9184) 

-7.2782 

(-0.9420) 

-1.3984 

(-0.7738) 

5.7951* 

(1.9775) 

-4.3503 

(-0.5173) 

ot -1.6293* 

(-1.6821) 

-8.8542*** 

(-3.7850) 

-0.0966 

(-0.1845) 

2.1566** 

(2.5230) 

-3.9702* 

(-1.7433) 

Diagnostic Tests 

LM 1.0962 1.0417 1.3366 0.2539 0.1261 

Reset 0.6390  0.1168 0.2161 1.2485 1.7831 

Hetero 0.3508 1.6067 2.5054@@ 0.8544 0.3576 
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Table 4 (Continued) 

 Model 2 

 ln xt,t ln x0,t ln x1,t ln x2,t ln x3,t ln x4,t 
Wald-Statistic  4.2664@@    3.1754   9.3907@@@  3.8556@@   5.8582@@@  5.1188@@@ 

 ln x5,t ln x6,t ln x7,t ln x8,t ln x9,t  

Wald-Statistic    7.7713@@@  4.2301@@     6.4359@@@  5.4943@@@  3.9500@@  
 

 ln xt,t ln x0,t ln x1,t ln x2,t ln x3,t ln x4,t 

ln et -0.4927 

(-0.5682) 

2.3670** 

(2.1122) 

5.3155** 

(2.5524) 

-0.1594 

(-0.0784) 

-0.1274 

(-0.0814) 

-0.2476 

(-0.1255) 

ln yt  0.0993 

(1.1181) 

-0.6348*** 

(-4.4380) 

-1.0061** 

(-2.9499) 

0.4269* 

(2.0061) 

-1.1149*** 

(-4.9695) 

0.8267*** 

(3.1985) 

𝑣𝑡
+  7.0902** 

(2.1540) 

-7.4489* 

(-1.7053) 

-13.4218** 

(-2.8741) 

20.5297** 

(2.5557) 

14.4789*** 

(3.0445) 

4.2991 

(0.5482) 

𝑣𝑡
−  -3.6033 

(-0.6947) 

7.6443 

(1.0853) 

34.1240** 

(2.6405) 

-24.8528** 

(-2.1884) 

-29.6143*** 

(-3.0579) 

16.0780* 

(1.8262) 

𝑜𝑡
+  -0.8968 

(-0.7123) 

1.8289 

(1.0792) 

-1.2761 

(-0.6281) 

-1.6316 

(-0.5689) 

-2.1915 

(-1.2316) 

-2.1345 

(-0.5818) 

𝑜𝑡
−  -1.3297 

(-1.6722) 

-0.7971 

(-0.6980) 

-0.7843 

(-0.3043) 

-1.4905 

(-0.9832) 

-1.4612 

(-0.9175) 

-5.4624** 

(-2.3559) 

Diagnostic Tests 

LM 0.5485 0.5575 0.1666 0.7829 0.1822 0.5708 

Reset  0.5549  1.3699 0.0220 0.2063  2.8795@ 1.1220 

Hetero 1.3736  0.7888 3.1842@@@ 1.2319 0.6399 0.7063 

 

 ln x5,t ln x6,t ln x7,t ln x8,t ln x9,t 

ln et 0.4194 

(0.5424) 

11.9708** 

(2.4694) 

-0.3589 

(-1.0977) 

1.9847* 

(1.9721) 

-6.7718 

(-1.5682) 

ln yt  -0.4683*** 

(-4.7307) 

-1.3005*** 

(-3.2060) 

0.2159*** 

(3.6700) 

-0.1685 

(-1.1748) 

1.1179 

(1.4070) 

𝑣𝑡
+  -4.3424** 

(-2.2949) 

-9.8058 

(-0.8270) 

2.1931*** 

(2.9148) 

0.3344 (0.1093) 37.8969* 

(1.9625) 

𝑣𝑡
−  13.4607** 

(2.8159) 

54.1194** 

(2.0583) 

-3.4835* 

(-1.6818) 

2.0072 (0.3178) 0.0919  

(0.0103) 

𝑜𝑡
+  -0.9613 

(-0.8034) 

-32.2650*** 

(-3.2096) 

0.5176 

(1.0717) 

-0.6802  

(-0.5775) 

-1.4804 

(-0.2474) 

𝑜𝑡
−  -1.0061 

(-1.0776) 

8.1425 

(1.5286) 

0.3583 

(0.8157) 

1.9954* 

(1.8050) 

-10.4410** 

(-2.1077) 

Diagnostic Tests 

LM 1.4820 1.6070 3.0026@ 0.2873 3.9907@@ 

Reset  1.2159 1.2735 0.0033 0.1389 0.1436 

Hetero 1.4257 1.1152 2.4022@@ 1.2941 0.4630 

Notes: xt,t is total export at time t. xi,t is export of SITC i (i = 0, … , 9) at time t. et is exchange rate at time t. yt is 

foreign demand at time t. vt is exchange rate volatility estimated by the SVMA/SVM model at time t. ot is oil price 

volatility estimated by the SVM model at time t. LM is the Lagrange multiplier test of disturbance serial correlation. 

Reset is the test of functional form. Hetero is the test of heteroscedasticity. The ordinary least squares (OLS) estimator 

with Newey-West standard error is used when the Lagrange multiplier test of disturbance serial correlation is found 

to be significant. The OLS estimator with Huber-White standard error is used when the test of heteroscedasticity is 

found to be significant. Values in the parentheses are the t-statistics. *** (**, *) denotes significance of the t-statistic 

at the 1% (5%, 10%) level. @@@ (@@, @) denotes significance of the F-statistics at the 1% (5%, 10%) level.  
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Table 5 

The Results of the Error-Correction Models 
 

Model 1 

  ln xt,t  ln x0,t  ln x1,t  ln x2,t  ln x3,t  ln x4,t 

constant 8.0866*** 8.3609*** 6.6644*** 7.2123*** 15.3088*** 4.7548*** 

 ln et-i 0.5976  2.3548@@ 5.0920 1.9473 5.7115** 1.1063 

 ln yt-i  0.1277** -0.8258(F) 0.3299 -0.2809 -0.5960**  0.8807*** 

 vt-i 15.2984** -4.5107 -21.0258 16.6957 9.2489 49.0068*** 

 ot-i -1.5183 12.0301** 10.9129 -22.0376@@@ -4.7104 -9.7926 

 ln xj,t-i  - -0.8258(F) - - - 0.1120 

ect-1  -0.7013*** -0.6463*** -0.8975*** -0.5851*** -1.0311*** -0.7646*** 

Diagnostic Tests 

Adj. R2 0.3449 0.4611 0.5262 0.3636 0.4963 0.4381 

LM 4.1254@@ 1.3145 0.4305 0.9772 2.5045@ 1.0662 

Reset  0.0745 0.1530 0.0407  2.8387@  0.2281  0.1670 

Hetero 0.1863  1.3502 0.9856 1.2138 0.4817 0.8436 

 

  ln x5,t  ln x6,t  ln x7,t  ln x8,t  ln x9,t 

constant 6.1439*** 9.4919*** 9.4796*** 4.9230*** 2.9201*** 

 ln et-i 0.0229 3.7272** 0.1513 -3.8772*** 1.7545 

 ln yt-i  -0.1425* 0.1768 0.1685** -0.1455 0.0859 

 vt-i 2.2700 -5.2631 12.4862** 2.0733 2.9942 

 ot-i 0.2565 -7.3449(F) 4.7269** 7.6347** -9.0157** 

ect-1  -0.6631*** -0.6049*** -0.9305*** -0.8536*** -0.3832*** 

Diagnostic Tests 

Adj. R2 0.2856 0.3171 0.4641 0.4396 0.2046 

LM 3.5010@@ 0.8149 1.0957 0.2123 0.7868 

Reset 0.1950  0.3797 0.4550 0.7042 0.1222 

Hetero 0.4896 0.7391 2.4452@@ 1.8031 0.8001 
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Table 5 (Continued) 

Model 2 

  ln xt,t  ln x0,t  ln x1,t  ln x2,t  ln x3,t  ln x4,t 

constant 5.0892*** 5.2399*** 12.0100*** 3.0657*** 11.8665*** 3.3185*** 

 ln et-i 1.4481@@ 1.2828 7.0256  4.5928@@@ 4.4216* 1.4688 

 ln yt-i  0.1166 -0.3328*** -0.1639 -0.0861 0.9159(F) -2.2428@@ 

 𝑣𝑡−𝑖
+   -5.1191@@@  3.8164@@ -9.3739 -21.2646@@@ 0.2602 -7.2598(F) 

 𝑣𝑡−𝑖
−   -0.4006(F) -2.2566 21.6908 17.2299@@ 6.9972 17.956** 

 𝑜𝑡−𝑖
+   -0.5483(F) 0.6404 -0.2203 1.2927 -2.0141 1.8456(F) 

 𝑜𝑡−𝑖
−   1.2529(F)  1.5472@@ -1.3807 -0.6659 0.9361 5.9468@@@ 

 ln xj,t-i - - - - -0.2094** 0.1715* 

ect-1 -0.5091*** -0.4614*** -0.9495*** -0.5243*** -0.9388*** -0.7136*** 

Diagnostic Tests 

Adj. R2 0.5245 0.3815 0.4628 0.4194 0.6636 0.5578 

LM 0.3676 0.7089 0.2123 0.6374 0.1644 0.1720 

Reset  0.0055 1.7686 0.0167  3.6344@  0.3044 0.0159 

Hetero 1.0587  0.6903 1.3197 0.9221 0.3740 0.4966 

 

  ln x5,t  ln x6,t  ln x7,t  ln x8,t  ln x9,t 

constant 8.6524*** 9.5366*** 7.9097*** 5.1175*** -1.8342*** 

 ln et-i  2.8580@@ 18.4411@@@ 0.2067 -0.9442 -2.4647(F) 

 ln yt-i   0.0804(F) -0.5612** 0.1936** 0.0531 -1.6958@@@ 

 𝑣𝑡−𝑖
+   -0.9744 -18.3360@@@ 0.9776* -2.9187** -17.5217@@@ 

 𝑣𝑡−𝑖
−   -14.6606@@ -14.3794(F) -0.5334 8.4607** -3.2467 

 𝑜𝑡−𝑖
+   -0.7222(F) 16.4047@@@ -0.0504 -0.3337 -10.6639@@@ 

 𝑜𝑡−𝑖
−   2.6040@@ -4.3938(F) 1.0536** 1.1418 12.3999@@@ 

 ln xj,t-i - -1.0115@@@ - - -0.9141@@ 

ect-1 -0.7865*** -0.3772*** -0.8736*** -0.5138*** -0.2944*** 

Diagnostic Tests 

Adj. R2 0.4231 0.7102 0.4555 0.4014 0.5886 

LM 1.7727 1.6160 3.3257@@ 0.4807 2.8297@ 

Reset 0.3479 0.4522  0.0297 1.7239  0.0077 

Hetero 1.3788 1.4266 1.6698 1.6674 0.4284 

Notes: xt,t is total export at time t. xi,t is export of SITC i (i = 0, … , 9) at time t. et is exchange rate at time t. xj,t-k is lag of 

total export or export of SITC i (i = 0, … , 9) (k = 1, 2, 3) at time t. yt is foreign demand at time t. vt is exchange rate 

volatility estimated by the SVMA/SVM model at time t. ot is oil price volatility estimated by the SVM model at time t. 

Adj. R2 is the adjusted R2. LM is the Lagrange multiplier test of serial correlation in the disturbance term. Reset is the 

test of functional form. Hetero is the test of heteroscedasticity. The ordinary least squares (OLS) estimator with Newey-

West standard error is used when the Lagrange multiplier test of serial correlation in the disturbance is found to be 

significant. The OLS estimator with Huber-White standard error is used when the test of heteroscedasticity is found to be 

significant. *** (**, *) denotes significance of the t-statistics at the 1% (5%, 10%) level. @@@ (@@, @) denotes 

significance of the F-statistics at the 1% (5%, 10%) level. (F) denotes the F-statistics. 
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Can Tax on Energy Consumption Reduce CO2 Emissions? 

Hong Chen, Sun Yat-sen University, Guangzhou, China. 

 

Baljeet Singh, School of Economics, the University of the South Pacific, Fiji. 

 

Abstract 

China made a commitment in the 2015 United Nations Climate Change Conference in Paris to 

reduce CO2 emissions per unit of GDP by 60 percent by year 2030. The current study attempts to 

explore the measures to reduce CO2 emissions caused by energy consumption. In particular, it 

examines the effectiveness of energy consumption tax on reduction of CO2 emissions. This is made 

possible by investigating the impacts of energy price, energy consumption and their interaction on 

CO2 emissions, using times series data on three sources of energy, namely fossil fuel, coal and gas, 

over 1984-2013 in China. Empirical analysis suggests that tax on total energy consumption does 

not reduce CO2 emissions from oil and coal consumption, but reduces CO2 emissions from gas 

consumption; and that tax on energy consumption exceeding threshold levels effectively hurdles 

further increases in CO2 emissions from all three sources of energy. 
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1. Introduction 

This study examines the influences of energy price and energy consumption on environmental 

pollution (CO2 emissions) in China. There has been a significant rise in CO2 emissions from 

energy consumption in the new industrialized countries compared to developed countries over the 

last two decades. Deterioration of environment has triggered major concerns about global warming 

and climate change. Hence, understanding the reasons behind environmental degradation and its 

relation with economic development and energy use has become common ground of research 

among economists.   

 

There is an extensive existing literature examining the debate about the relationship between 

energy consumption, income and pollution in both developed and developing countries, which can 

be broadly classified into three groups. The first group examines the relationship between income 

and environmental pollution under the Environmental Kuznets Curve (EKC). The EKC hypothesis 

asserts that pollution rises with rising income at the initial stage and then turns to decline after both 

pollution and income reach threshold levels (Grossman and Krueger, 1994). A number of studies 

(Stern, 2004; Dinda, 2004; Kijima et al., 2010; Seldon and Song, 1994; Unruh and Moomaw, 1998; 

Managi and Jena, 2008; Shafik, 1994) empirically test the EKC hypothesis but fail to produce 

conclusive evidence.  

 

The second group of studies examine the nexus between energy consumption and economic 

growth using different econometric methodologies, and reveal varied and inconclusive results 

(Kraft and Kraft, 1978; Masih and Masih, 1996; Narayan et al., 2008). The third group of studies 

claim that the lack of conclusive evidence in the first two groups of studies is due to omitted 

variable bias, and examine dynamic relationships among carbon emissions, energy consumption, 

and economic growth in a single framework. See, for example, Ang (2007), Zhang and Cheng 

(2009), Ghosh (2010), Halicioglu (2009) for Turkey, Jail and Mahmud (2009) for China, Iwata et 

al. (2010) for France, and Saboori and Sulaiman (2013) for five Asian countries. Findings from 

these studies are again generally inclusive, continuing to arouse interests among researchers and 

policy makers. 

 

The main objective of this paper is to investigate the impacts of disaggregate energy consumption 

and energy price on CO2 emissions in China. Further, with the inclusion of the interaction between 

energy consumption and energy price in explaining CO2 emissions, we aim to examine whether 

tax on excessive energy consumption effectively hurdle CO2 emissions. This study is important 

for the following reason. Energy prices increased multifold over the period from early 2000s to 

2012; this has become a substantive concern in the world’s macroeconomic environment. Despite 

surges in energy prices, CO2 emissions worldwide increased contemporarily; in particular, China 

has overtaken the US and became the largest emitter of CO2. The major increase in CO2 emissions 

in China was attributed to fast increasing coal consumption which grew at 10 percent annually 

from early 2000s to 2012. Coal consumption in China declined after 2012. In contrast, oil and gas 

consumption have persisted continuous and strong growth over time. Concurrent increases in 

energy prices and CO2 emissions in China raise an important paradox which needs further 

investigation. 
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Contribution of this paper to the literature is threefold: first, to the best of our knowledge, the 

existing literature on China utilizes aggregate data to investigate the nexus between energy 

consumption, income and CO2 emissions. However, different energy sources are heterogenous in 

terms of efficiency and contribution to CO2 emissions. Natural gas has the highest thermal 

efficiency, followed by oil and coal (Hao et al., 2016). In producing same quantity of heat, coal 

combustion emits largest quality of CO2, followed by oil and gas. Hence, an analysis of 

differentiating between impacts of disaggregate energy sources on CO2 emissions is important for 

policy makers to formulate heterogeneous policies for different energy sources.  

 

Second, most existing studies ignore energy price in CO2 emissions models. An analysis of impacts 

of both energy consumption and prices on CO2 emissions in China is timely and imperative from 

policy perspective. China made a commitment in the 2015 United Nations Climate Change 

Conference in Paris to reduce CO2 emissions per unit of GDP by 60 percent by year 2030. The 

current study is essential for framing appropriate energy tax policies to in order to achieve the goal. 

Ideally, a rise in energy price would encourage consumers to adopt more efficient energy mix or 

more energy efficient technologies (Selden et al., 1999; Stern, 2004) and hence reduce energy 

consumption and CO2 emissions. However, given that China is an influential producer and 

consumer of energy, an increase in energy price is likely to affect CO2 emissions through many 

channels. Some channels contribute to increase CO2 emissions while others mitigate emissions.  

 

First of all, an increase in coal and oil prices would boost wealth of coal and oil producers in China, 

which consequently creates demand for other goods and services and heighten CO2 emissions. 

Secondly, given other conditions unchanged, increases in price are associated with decreases in 

consumption; however, due to strong economic growth, demand for energy grows strongly and 

continuously over time in China. As a matter of fact, China is able to mitigate part of the losses 

arising from rising energy prices. Thirdly, China’s capability of substituting labour with more 

capital input leads to significant increases in China’s labour productivity, creating more demand 

for Chinese products from the global market; consequently, energy demand and CO2 emissions 

rise even in circumstances when energy prices increase (Faria et al., 2009). Furthermore, 

improvements in income and export earnings create demand for energy related goods and services 

such as transport and vehicles; as a result, CO2 emissions rise (Skeer and Wang, 2007). Therefore, 

given substitutions of energy sources and China’s characteristics of being an open economy as 

well as an oil and coal producer, energy prices’ influences on CO2 emissions are multifold; it is 

essential in policy perspective to find out the overall effects of energy prices on China’s CO2 

emissions. 

 

The third contribution of the current study is the assessment of tax’s influences on CO2 emissions. 

We include in the models not only energy price but also the interactive term between energy price 

and energy consumption, and hypothesize a negative relationship between the interactive term and 

CO2 emissions. Non-rejection of the hypothesis would imply that imposition of tax on energy 

consumption exceeding threshold levels (or, excessive energy consumption) effectively reduces 

marginal CO2 emissions (or, hurdles excessive CO2 emissions). 

The rest of the paper is organized as follows. Section 2 illustrates some stylish facts. Section 3 

proposes the models. Section 4 describes data. Section 5 presents empirical findings. And Section 

6 provides conclusions and policy advices. 
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2. Stylish Facts 

People's Bank of China and the China Banking Regulatory Commission (2017) announced that 

from 1st January 2018 maximum loan ratios for new energy cars, traditional cars and second-hand 

cars will be respectively 85 percent, 80 percent and 70 percent. 

 

3. Models 

To examine the relationships between output, disaggregate energy consumption, disaggregate 

energy prices, and CO2 emissions, Bloch, Rafig and Salim (2015) propose a framework including 

one supply-side model and two demand-side models (henceforth, the BRS framework). In the 

supply-side model, the authors explain output with factors including capital stock, labor and 

disaggregate energy consumption; in the first demand-side model, the authors explain disaggregate 

energy consumption with factors including output and disaggregate energy prices; and in the 

second demand-side model, the authors explain CO2 emissions with factors including output and 

disaggregate energy consumption. Note that the authors exclude energy prices in the CO2 

emissions model. 

 

We amend the BRS framework by, (1) incorporating our hypotheses on the energy price-CO2 

emissions nexus in the second demand-side model, i.e., the CO2 emissions model; (2) 

endogenizing energy prices as hypothesized by Apergis and Payne (2014). Our proposed 

framework is as follows: 

 

0 1 2 3 4 5

Y Y Y Y Y Y Y

t t t t t t tY KPC EO EC EG T              (1) 

0 1 2 3

CO CO CO CO CO

t t t t t tCO PO Y PO Y           (2.1) 

0 1 2 3

CC CC CC CC CC

t t t t t tCC PC Y PC Y           (2.2) 

0 1 2 3

CG CG CG CG CG

t t t t t tCG PG Y PG Y           (2.3) 

0 1 2 3 ( )EO EO EO EO EO

t t t t t tEO PO CO PO CO           (3.1) 

0 1 2 3 ( )EC EC EC EC EC

t t t t t tEC PC CC PC CC           (3.2) 

0 1 2 3 ( )EG EG EG EG EG

t t t t t tEG PG CG PG CG           (3.3) 

0 1 2 3

PO PO PO PO PO

t t t t tPO PC PG CO          (4.1) 

0 1 2 3

PC PC PC PC PC

t t t t tPC PO PG CC          (4.2) 

0 1 2 3

PG PG PG PG PG

t t t t tPG PO PC CG          (4.3) 

The above framework displays a multiple equations system, where Equation (1) is the supply-side 

model, Equations (2.1)-(2.3) are demand-side equations modelling oil, coal and gas consumption 

respectively, Equations (3.1)-(3.3) are demand-side equations modelling CO2 emissions from 
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using oil, coal and gas respectively; and Equations (4.1)-(4.3) model energy prices. Notations in 

the above system are described as follows: 

Y  = per capita GDP (at constant 2010 price, $, natural logarithm); 

KPC  = per capita capital stock at current price (at constant 2010 price, $, natural logarithm). This 

series is estimated with the perpetual inventory method with depreciation rate of 9.6% and initial 

capital stock in year 1960 being 10 times investment of the same year; 

 

T  = time trend, with value 1 for year 1984, 2 for year 1985, and so on (natural logarithm); 

EO  = CO2 emissions from oil consumption (% of total, natural logarithm); 

EC  = CO2 emissions from coal consumption (% of total, natural logarithm); 

EG  = CO2 emissions from gas consumption (% of total, natural logarithm); 

CO  = Consumption of oil (% of total, natural logarithm); 

CC  = Electricity production from coal (% of total, natural logarithm); 

CG  = Electricity production from coal (% of total, natural logarithm); 

PO  = Price of oil (constant 2010 prices, $, natural logarithm); 

PC  = Price of coal (constant 2010 prices, $, natural logarithm); 

PG  = Price of gas (constant 2010 prices, $, natural logarithm); 

α  = parameter to be estimated; and 

ε  = error term. 

 

Further, superscript of parameter and error term represents the dependent variable of 

corresponding equation; and subscript t represents time. Note in the above system, prices of 

substitutions of energy sources are not considered in demand equations, due to high correlation 

between prices of energy sources.  

 

As robustness tests of prices’ influences on energy consumption as well as on CO2 emissions, we 

set up another two multiple equations frameworks. First, we remove the hypothesis of endogenous 

energy prices and a new framework consists only Equations (1)-(3.3); Second, we set up another 

multiple equations framework, where the interactive terms ( t tPO Y , t tPC Y , t tPG Y ) in demand 

equations (2.1)-(2.3) are replaced with squared income ( 2

tY ), and the interactive terms ( t tPO CO

, t tPC CC , t tPG CG ) are replaced with respective squared energy consumption ratios ( 2

tCO , 
2

tCC , 2

tCG ) in demand equations (3.1)-(3.3). With this setup, we assume that income has quadratic 

impacts on energy consumption in a way that income beyond threshold level reduces marginal 

energy consumption, and that energy consumption has quadratic impacts on CO2 emissions in a 

way that energy consumption beyond threshold level reduces marginal CO2 emissions. Non-

rejection of these hypotheses further provides incentives for policy makers to take measures to 

reduce excessive CO2 emissions from excessive energy consumption. 

 

4. Data 

Data on prices are obtained from the Quandl website, and the rest are from World Development 

Indicators (WDI) database. Trends of major variables, including GDP, per capita GDP, energy 

prices, energy consumption as percent of total energy, and CO2 emissions as percent of total 

emissions, are presented in Figures 1-4. The following observations are noted. Clear upward trends 

are noted in GDP and per capita GDP at 2010 prices, associated with increasing demands for 



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

113 

 

energy and CO2 emissions volume; oil price and coal price at constant 2010 prices are generally 

on the rise with substantial declines were seen in early 1990s and late 2000s; there was clear rise 

in natural gas price from late 1990s to late 2000s, and after 2008 gas price declined significantly; 

oil consumption as percent of total energy increased over time; electricity generation from coal 

source as percent of total electricity has generally stabilized since early 1990s, given availability 

of substitutions such as hydropower, nuclear power and wind power; and trends of CO2 emissions 

from the three sources of energy as percent of total emissions are in general consistent with energy 

consumption ratios. 

[Insert Figure 1-5 here] 

 

Pairwise correlation diagrams between energy prices and CO2 emissions volume are shown in 

Figure 5. There are clear positive associations between energy price and CO2 emissions volume in 

the cases of oil and coal, and such association is not evident in the case of natural gas. Summary 

statistics and coefficients of pairwise correlation between major variables are respectively 

presented in Table 1 and Table 2. From Table 2 we see high correlations amongst variables such 

as EG, CO, CC, CG and PO, hence combination of these variables in corresponding equations 

should be chosen with care in order to avoid multicollinearity problem. 

 

[Insert Tables 1 and 2 here] 

 

5. Findings 

In this section two issues in time series regression analysis are addressed: (1) Regression results 

are non-spurious. This requires cointegression of variables that are integrated of order one. (2) 

Endogeneity of regressors is addressed by using the three-stage least squares estimator.  

 

5.1. Integration and cointegration tests 

Integration and cointegration tests are necessary in order to avoid risk of obtaining spurious 

regression results. Unit root test allowing for the presence of two structural breaks, described by 

Clemente, Montanes and Reyes (1998), is used to test the null hypothesis that a time series contains 

unit root. Integration tests for variables at level and in first differences are based on tests with 

maximum 2 lags. Since all test statistics for integration tests of variables at level are greater than 

critical statistics at the 5 percent significance level, the null hypothesis of non-stationary time series 

is not rejected for all variables at level. Integration tests for variables in first differences reject the 

null hypothesis of non-stationarity at the 5 percent significance level, since all test statistics are 

smaller than critical values at the 5 percent significance level. These conclude that all quantitative 

variables are integrated of order 1, with the presence of up to two structural breaks. Optional 

breakpoints are hypothesized and tested in the Clemente, Montanes and Reyes (1998) unit root 

tests. A p-value of less than 0.05 is taken as the evidence to reject the null hypothesis that a year 

is not a structural break at the 5 percent significance level. Dummy variables, which are included 

in the final regression model for each country, are decided based on unit root test of estimated 

errors obtained in ordinary least squares estimation. The same unit root test is further used to test 

estimated errors from each ordinary least squares regression 
t̂ . Since observed test statistics are 

respectively smaller than the 5 percent critical values in the Clemente, Montanes and Reyes (1998) 

unit root tests (see Table 2), respective combinations of quantitative variables in Equations (1) 
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produce stationary error terms in all time-series regressions. This suggests that estimation of 

Equation (1) would yield non-spurious regression results for each country under study. 

 

[Insert Tables 3-6 here] 

 

[Insert Figure 6 here] 

 

The multiple equations system is estimated by the three-stage least squares estimator. It is found 

that: 

(1). CO2 emissions are harmful to income; 

(2). Oil and coal prices are positively associated with CO2 emissions, while natural gas price is 

negatively associated with CO2 emissions. This suggests that tax on general consumption of oil 

and coal (i.e., addition to energy price) doesn’t help reduce CO2 emissions caused by using oil and 

coal; 

(3). Energy consumption is positively associated with CO2 emissions in all three sources of energy; 

(4). Interaction between price and energy consumption reduces CO2 emissions in all three sources 

of energy, indicating that tax on the portion of consumption of three energy sources exceeding 

threshold levels effectively reduces CO2 emissions; 

(5) In the cases of oil and coal, energy price and income are positively associated with energy 

consumption, and interaction between price and income is negatively associated with energy 

consumption. such associations are not significant in the case of gas. 

(6) In the robustness analysis, we found that the hypothesis of income’s quadratic effects on energy 

consumption is not rejected, consistent with findings from Jalil and Mahmud (2009); however, this 

finding doesn't mean that income’s non-linear impacts can only take the quadratic form. The 

performance of income squared suggests that income beyond certain level reduces income’s 

marginal effect on energy consumption. This is phenomenon we observed; but what is the 

mechanism to such phenomenon? We propose that, marginal energy consumption is reduced if 

government imposes energy consumption tax on those with high income. 

 

Other macroeconomic indicators such as openness, urbanization and transport development are 

not included in this framework due to high correlation between any of these indicators with 

variables currently included. As further robustness analyses, we also try different forms of 

variables, for instance, energy consumption per capita in place of energy consumption ratio, CO2 

emissions per capita in place of CO2 emissions ratio, values at current prices in place of values at 

constant prices, and values in US dollar in place of values in local currency yuan. Quantitative 

analyses using different forms of variables yield similar results. 

 

 

 

 

6. Conclusions  

This study examined the impact of energy tax on CO2 emission in China. We found that a tax on 

income beyond a threshold levels of income will reduce excessive energy consumption of coal and 

oil in China. We further note that tax on energy consumption exceeding threshold levels will 

reduce Co2 emissions from using oil, coal and gas. 
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Figure 1. GDP and GDP per capita (constant 2010 prices) 
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Figure 2. Energy prices by energy source 
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Figure 3. Energy consumption by energy source 
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Figure 4. CO2 emissions from energy consumption by energy source 
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Figure 5. Scatter diagrams between energy price and CO2 emissions by energy source 
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Figure 6. Simultaneous impacts of oil price and oil consumption on CO2 emissions 
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Table 1. Summary statistics 

Series Mean Standard deviation Minimum Maximum 

CO2 emissions from oil consumption (% of total) 15.08 1.96 11.57 19.07 

CO2 emissions from coal consumption (% of total) 75.63 3.50 69.36 80.64 

CO2 emissions from gas consumption (% of total) 1.63 0.52 1.12 3.13 

Oil consumption (% of total energy consumption) 80.29 5.79 71.16 88.73 

Electricity production from coal sources (% of total) 74.55 5.26 58.29 80.95 

Electricity production from gas sources (% of total) 0.69 0.58 0.24 2.04 

GDP per capita (constant 2010 price, $) 2122 1570 481 5722 

Capital stock per capita (constant 2010 price, $) 4362 3757 818 13910 

Oil price (constant 2010 price, $) 50.96 18.71 22.37 104.10 

Coal price (constant 2010 price, $) 76.93 20.96 48.48 149.28 

Gas price (constant 2010 price, $) 6.54 2.44 3.41 14.08 

Note: Data on prices are obtained from the Quandl website, and the rest are from World Development Indicators (WDI). 
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Table 2. Correlation Matrix 

  Y KPC EO EC EG CO CC CG PO PC PG 

Y 1.0000           
KPC 0.9992 1.0000          
EO -0.2346 -0.2492 1.0000         
EC -0.7318 -0.7230 -0.4669 1.0000        
EG 0.8634 0.8736 -0.3236 -0.6181 1.0000       
CO 0.9886 0.9866 -0.2274 -0.7039 0.7969 1.0000      
CC 0.7775 0.7576 0.1393 -0.7511 0.4547 0.8011 1.0000     
CG 0.7425 0.7520 -0.6375 -0.2211 0.7672 0.7198 0.3898 1.0000    
PO 0.6825 0.6950 -0.4550 -0.2581 0.6337 0.7141 0.3264 0.6555 1.0000   
PC 0.2750 0.2745 -0.6629 0.2877 0.1572 0.3311 0.1579 0.5099 0.5567 1.0000  
PG 0.0331 0.0255 0.5295 -0.2850 -0.2301 0.1288 0.2522 -0.3029 0.2973 0.0095 1.0000 
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Table 3. Clemente, Montanes and Reyes (1998) two-break unit root tests 

Variable Optimal breakpoint 1 (p-value) Optimal breakpoint 2 (p-value) Observed t-stat (H0: rho – 1 = 0) 5% critical value 

Y 1993 (0.000) 2004 (0.000) -2.711 -5.490 

KPC 1995 (0.000) 2005(0.000) -2.597 -5.490 

EO 1998 (0.001) 2006 (0.000) -3.375 -5.490 

EC 1994 (0.000) 2000 (0.171) -3.680 -5.490 

EG 1995 (0.001) 2008 (0.000) -3.563 -5.490 

CO 1991 (0.000) 2004 (0.000) -2.743 -5.490 

CC 1986 (0.000) 1993 (0.000) -3.503 -5.490 

CG 1987 (0.005) 2006 (0.000) -4.383 -5.490 

PO 1996 (0.080) 2003 (0.000) -4.255 -5.490 

PC 1997 (0.002) 2005 (0.000) -4.118 -5.490 

PG 2001 (0.000) 2008 (0.000) -3.670 -5.490 

εY 1985 (0.004) 1992 (0.684) -5.656 -5.490 

εEO 1994 (0.000) 2009 (0.000) -5.879 -5.490 

εEC 1999 (0.109) 2002 (0.106) -5.668 -5.490 

εEG 1999 (0.037) 2004 (0.144) -5.746 -5.490 

εCO 1983 (0.777) 1988 (0.183) -5.524 -5.490 

εCC 1996 (0.000) 2005 (0.000) -5.511 -5.490 

εCG 1993 (0.000) 2005 (0.000) -5.548 -5.490 

εPO 1987 (0.001) 2000 (0.048) -5.536 -5.490 

εPC 1987 (0.000) 1996 (0.001) -5.592 -5.490 

εPG 1998 (0.029) 2010 (0.000) -5.813 -5.490 

Note: Numbers before parentheses are optimal breakpoints; numbers in parentheses are p-values; ε with superscripts are estimated errors from corresponding 

Equations (1)-(4.3). 
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Table 4. Estimation of the multiple equations system 

Dependent 

variable 

Income CO2 emissions Energy consumption Energy prices 
Y EO EC EG CO CC CG PO PC PG 

Explanatory 

variables 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 
Constant 16.4 -44.98 -12.70 .621 3.088 -.341 -2.628 -11.49 3.840 -1.319 
 (4.56) (-3.23) (-2.55) (6.70) (13.39) (-0.27) (-1.00) (-4.76) (1.43) (-2.10) 
Y     .167 .596 .308    
     (2.94) (3.55) (0.92)    
KPC .597          
 (7.84)          
EO -.688          
 (-4.15)          
EC -2.826          
 (-3.86)          
EG -.192          
 (-3.90)          
PO  13.52   .171    .713 .897 
  (3.95)   (5.51)    (3.66) (6.28) 
PC   4.627   .963  .798  -.162 
   (3.88)   (3.24)  (5.74)  (-1.17) 
PG    -.240   .506 .316 -.198  
    (-4.20)   (0.32) (3.50) (-1.89)  
CO  10.88      2.604   
  (3.43)      (4.51)   
CC   3.852      -.447  
   (3.36)      (-0.77)  
CG    .390      -.351 
    (3.29)      (-4.82) 
PO CO  -3.091         
  (-3.97)         
PC CC   -1.050        
   (-3.83)        
PG CG    -.236       
    (-3.39)       
PO  Y     -.021      
     (-2.80)      
PC  Y      -.125     
      (-3.27)     
PG  Y       -.126    
       (-0.63)    
T .013          
 (1.76)          
D1986      .057     
      (2.26)     
D1987       .159    
       (0.98)    
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D1993      .042     
      (2.51)     
D1995 .054   .170       
 (3.99)   (3.72)       
D1998  .231         
  (5.97)         
D2001          .191 
          (2.14) 
D2003     .019      
     (3.72)      
D2005          -.582 
          (-4.60) 
D2006 .083   .375   1.138    
 (4.76)   (4.12)   (6.62)    
RMSE .0186 .0724 .0207 .1137 .0086 .0288 .2648 .2321 .2287 .2000 
R squares 0.9994 0.6739 0.7922 0.8360 0.9850 0.8461 0.8474 0.6289 0.2675 0.7550 

Note:  Equations are estimated simultaneously with three-stage least squares estimator; (*)(**)(***) represent significance at the 10%, 5% and 1% levels 

respectively; last eight variables are dummy variables; RMSE is root mean squared error.
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Table 5. Robustness analysis: Estimation of the multiple equations system 

Dependent 

variable 

Income CO2 emissions Energy consumption 

Y EO EC EG CO CC CG 

Explanatory 

variables 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 
Constant 15.59*** -38.19*** -9.902** .606*** 3.332*** 1.388 -4.177 

 (4.00) (-2.78) (-2.11) (6.46) (13.07) (1.13) (-1.49) 

Y     .139*** .374** .438 

     (3.99) (2.34) (1.22) 

KPC .517***       

 (5.91)       

EO -.656***       

 (-3.66)       

EC -2.542***       

 (-3.20)       

EG -.189***       

 (-3.45)       

PO  11.864***   .109*   

  (3.52)   (1.71)   

PC   3.959***   .562***  

   (3.54)   (1.99)  

PG    -.226***   1.677 

    (-3.90)   (0.98) 

CO  9.35***      

  (2.99)      

CC   3.214***     

   (2.98)     

CG    .434***    

    (3.48)    

PO CO  -2.717***      

  (-3.55)      

PC CC   -.898***     

   (-3.49)     

PG CG    -.253***    

    (-3.42)    

PO  Y     -.014*   

     (-1.70)   

PC  Y      -.074***  

      (-2.04)  

PG  Y       -.253 

       (-1.18) 

T .023***       

 (2.60)       

D1986      .084***  

      (3.29)  

D1987       .360** 

       (1.91) 

D1993      .039**  
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      (2.28)  

D1995 .051***   .175***    

 (3.30)   (3.75)    

D1998  .244***      

  (6.27)      

D2003     .022***   

     (3.59)   

D2006 .077***   .356***   1.208*** 

 (3.92)   (3.71)   (6.43) 

RMSE 0.0194 0.0716 0.0210 0.1130 0.0083 0.0276 0.2477 

R squares 0.9993 0.6810 0.7872 0.8382 0.9862 0.8579 0.8664 

Note:  Equations are estimated simultaneously with three-stage least squares estimator; (*)(**)(***) represent 

significance at the 10%, 5% and 1% levels respectively; last eight variables are dummy variables; RMSE is root 

mean squared error.  
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Table 6. Robustness analysis: Estimation of the multiple equations system 

Dependent 

variable 
Income CO2 emissions Energy consumption 

Y EO EC EG CO CC CG 

Explanatory 

variables 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Coef. 

(z stat) 

Constant 17.49*** -449.7*** -25.17*** .311*** 2.836*** -1.668*** 28.23*** 

 (4.15) (-6.96) (-2.99) (3.25) (20.27) (-3.56) (3.47) 

Y     .323*** 1.513*** -8.214*** 

     (8.94) (12.28) (-3.58) 

KPC .484***       

 (5.08)       

EO -.731***       

 (-3.82)       

EC -2.883***       

 (-3.32)       

EG -.212***       

 (-3.49)       

PO  .143***   .016***   

  (2.72)   (3.34)   

PC   .048***   .012  

   (3.92)   (1.18)  

PG    .017   -.260** 

    (0.30)   (-2.30) 

CO  208.8***      

  (7.07)      

CC   14.31***     

   (3.60)     

CG    .297***    

    (2.95)    

Y 2     -.016*** -.095*** .570*** 

     (-6.67) (-12.01) (3.61) 

CO 2  -24.13***      

  (-7.12)      

CC 2   -1.744***     

   (-3.73)     

CG 2    .164***    

    (2.93)    

T .025***       

 (2.56)       
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D1986      .039***  

      (3.12)  

D1987       .749*** 

       (3.75) 

D1993      -.051***  

      (-4.62)  

D1995 .048***   .177***    

 (2.98)   (4.03)    

D1998  .304***      

  (8.83)      

D2003     .023***   

     (4.97)   

D2006 .083***   .139   .605*** 

 (3.96)   (1.34)   (2.65) 

RMSE .0194 .0529 .0209 .1174 .0056 .0142 .2315 

R squares 0.9993 0.8264 0.7886 0.8252 0.9936 0.9623 0.8833 

Note:  Equations are estimated simultaneously with three-stage least squares estimator; (*)(**)(***) represent significance at the 10%, 5% and 1% levels 

respectively; last eight variables are dummy variables; RMSE is root mean squared error. 
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Abstract  

 

This study aims to examine the EKC hypothesis by taking into account one of the most 

important clean electricity sources, that is, nuclear energy in 18 OECD countries for the period 

1995-2013. We employ Panel FMOLS, Panel DOLS and PMG estimators to investigate the 

effects of electricity production from nuclear source, electricity production from non-

renewables and trade openness underlying the EKC hypothesis. It is found that the EKC 

hypothesis is valid in OECD countries. Nuclear energy is beneficial to the environment. In 

contrast, non-renewable energy sources tend to increase CO2 emissions. The results are 

consistent regardless of the methodology used.  

 

Keywords: Nuclear energy, Non-renewables, CO2 emissions, EKC, Electricity production. 

 

 

 

 

 

 

 

 

 

 

 

  



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

133 

 

1. Introduction  

 

While many people around the world are still debating on whether global warming is real (some 

treat it as a hoax), the climate scientists have agreed that the Earth is warming by looking at 

the facts and data. It is recorded that the average world temperature has increased between 0.4 

and 0.8°C over the last century. According to the World Meteorological Organization (2017), 

the year 2016 is confirmed as the warmest year on record, with a temperature 1.1°C above pre-

industrial era. By the year 2100, it is predicted that the average global temperature could 

increase between 1.4 and 5.8°C. The effects of global warming can be devastating. Events that 

cause huge socio-economic disruption such as extreme weather conditions (including hotter 

summers and colder winters) and rising sea levels (due to faster melting of sea ice) have 

prevailed as a result of global warming. These phenomena would persist in the years to come 

if nothing serious is in place to curb the problem of global warming. Thus far, some 

international mitigation efforts have been made to reduce greenhouse gases. Unfortunately, 

these initiatives are unable to achieve the set targets when it comes to carbon dioxide (CO2) 

reduction. For example, many industrial nations came to an agreement known as the Kyoto 

Protocol in 1997, but failed to reduce CO2 emissions levels subsequently. Most recently, the 

Paris Agreement35  had suffered a blow when the United States−the world second largest 

emitter−decided to withdraw from the agreement. 

 

The increased amount of CO2 and other greenhouse gases such as methane, nitrous oxide and 

fluorinated gas via the burning of fossil fuels and other human activities have caused heat to 

be trapped in the Earth’s atmosphere, leading to greenhouse effect that causes global warming. 

Ultimately, reducing emissions particularly CO2 seem to be the best solution for overcoming 

the issue of climate change. However, reducing CO2 may imply cutting down on human 

activities such as electricity generation that can in turn affect economic performance of a 

country. In this regard, policy makers together with environmentalists are facing challenging 

tasks of reducing CO2 while maintaining a country’s economic growth simultaneously. Studies 

in the past have indicated that there is an inverted U-shaped relationship between GDP and 

CO2 emissions in most occasions (for instance, Apergis & Ozturk, 2015; Dijkgraaf & 

Vollebergh,1998; Galeotti, Lanza, & Pauli, 2005), which can also be coined as the 

Environmental Kuznets Curve (EKC) hypothesis. The EKC hypothesis states that as GDP 

increases initially in a country, pollution tends to rise as well. However, as income keeps 

increasing and reaches a threshold, environmental deterioration reduces. This threshold level 

further suggests that economic growth could be a solution to environmental problems. 

 

The Intergovernmental Panel on Climate Change (IPCC) (2014) reported that electricity and 

heat production constitutes the largest share, i.e. 25 per cent of global CO2 emissions. 

Electricity generation involves the burning of fossil fuels such as coal, oil and natural gas. The 

increased use of these non-renewable energy sources in electricity production to cater for rising 

demand in electricity has worsened the environmental quality globally. As GDP of a country 

increases along an EKC, the demand for electricity increases. As stated, the more electricity is 

produced using non-renewable sources, the more pollutants will be emitted into the 

atmosphere. In other words, a country would find it more difficult to reach the turning point of 

EKC with more non-renewables used.  

 

                                                           
35 A climate agreement within United Nations Framework Convention on Climate Change (UNFCCC) aiming to 

reduce greenhouse gases through mitigation, adaptation and finance that will start in year 2020. 
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Today, many sources of energy are being used to produce electricity besides fossil fuels. 

Nuclear energy is one of these sources of energy that has been in the limelight in recent years. 

It is a clean-air source of energy that can minimize greenhouse gases and most importantly it 

is able to produce electricity 24 hours in a day. As mentioned by Apergis, Payne, Menyah and 

Wolde-Rufael (2010) and Adamantiades and Kessides (2009), nuclear energy does not only 

fulfil the energy needs of many countries, but also helps to reduce CO2 emissions in the long 

run. Accordingly, nuclear plants have recently saved about 10 per cent of CO2 emissions from 

the world energy use. Another advantage of nuclear energy lies with the fact that unlike 

renewable energy sources such as solar and wind power, it is not subject to unpredictable 

weather conditions. In its Fifth Assessment Report published in 2014, IPCC highlighted the 

difficulties of encouraging the development and adoption of renewable energies. The report 

warns that “No single mitigation option in the energy supply sector will be sufficient. 

Achieving deep cuts in greenhouse gas (GHG) emissions will require more intensive use of 

low-GHG technologies such as renewable energy and nuclear energy.”(IPCC, 2014). However, 

there are concerns with the use of nuclear energy such as reactor safety, nuclear proliferation 

as well as radioactive-waste transport and disposal. 

 

As part of their strategies to reduce dependence on foreign fuels and to avoid unpredictable oil 

price fluctuations, countries have built nuclear power plants for the purpose of electricity 

generation. (Toth & Rogner, 2006). Since 1990s, the need for switching to nuclear power 

increased among countries as signatories of Kyoto agreement were required to reduce CO2 

emissions (Saidi & Mbarek, 2016). In the case of OECD countries, nuclear energy gathered 

momentum in 1970s and today the OECD countries account for approximately 85 per cent of 

the installed nuclear capacity worldwide. In addition, nuclear power is responsible for 18.4 per 

cent of the electricity generated in these countries (Nuclear Energy Agency, 2016).  

 

Our study differs from the existing literature in several important ways. First, most of the 

existing studies focus on time series analysis (Begum et al., 2015; Iwata, Okada, & Samreth, 

2010; Menyah & Wolde-Rufael, 2010) which has the problems in controlling for 

heteroscedasticity, endogeneity, serial correlation and reliability (Baltagi, 2005). Therefore, 

our study will make use of panel data analysis to overcome these weaknesses.  Second, our 

study is unique in the sense that we employ Panel Fully Modified Ordinary Least Squares 

(FMOLS), Panel Dynamic Ordinary Least Squares and Pooled Mean Group (PMG) estimators 

to check the consistency of our results. Third, past researches tend to consider “nuclear energy 

consumption” in their studies (Al-Mulali, 2014; Baek, 2016). However, this study attempts to 

take a step further by employing “electricity production from nuclear source” as electricity 

generation is one of the most polluting human activities on Earth. Thus, our study aims to 

investigate the relationship among CO2 emissions, electricity production from nuclear energy, 

non-renewable energy, and GDP in 18 OECD countries using a mixture of econometric 

estimators namely, FMOLS, DOLS and PMG. 

 

The rest of the paper is organized as follow. The second section reviews the literatures. Section 

three discusses the data, model, estimation procedures, and results interpretations. The 

concluding remarks and policy implications are presented in the final section. 

 

2. Literature Review  

 

In the recent decades, the interaction of economic growth and environmental degradation has 

been studied extensively. The relationships among energy production, economic growth and 

CO2 emissions have been explored from different dimensions. The CO2 emissions and 
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economic growth nexus was first investigated, followed by energy-growth-pollution nexus. At 

a later date, researchers have extended the research by incorporating different energy sources 

such as nuclear energy into the EKC literature to examine the dynamic relationships among the 

environmental pollution, economic growth and a specific type of energy.  

 

Grossman and Krueger (1991) were the pioneers who studied the relationship between 

environmental pollution and economic growth. It is found that there is an inverted U-shaped 

relationship between these two variables. The inverted U-shaped relationship was further 

proven by the findings of Apergis and Ozturk (2015), Chiu (2017), Dijkgraaf and Vollebergh 

(1998), Galeotti, Lanza, and Pauli (2005), Jalil and Mahmud (2009), Kristrom and Lungren 

(2003), Li, Wang and Zhao (2016) and Narayan and Narayan (2010).The inverted U-shaped 

relationship, which is named as Environmental Kuznets Curve thereafter, suggests that the 

increase in level of CO2 emissions follows the upward trend of GDP at the early stage of 

economic development. However, when the economy grows further and meets a stabilization 

point, the level of CO2 emissions decreases. It can be explained by the fact that the later stage 

of economy is developed along with the structural and technological changes which could 

diminish the environmental degradation. While the inverted U-shaped hypothesis exists in most 

of the studies, mixed results have been found by other researchers. Friedl and Getzner (2003) 

and Zanin and Marra (2012) found an invalid U-shaped EKC, that is, N-shaped curve in the 

pollution-growth nexus. Meanwhile, Bertinelli and Strobl (2005), Cialani (2007) as well as 

Rezek and Rogers (2008) have revealed a monotonically upward curve but Focacci (2003) 

found a monotonically downward curve.  

 

Numerous studies have been done on the relationships among energy, economic growth and 

CO2 emissions.  Bastola and Sapkota (2015) discovered that economic growth Granger causes 

both carbon emissions and energy consumption unidirectionally in Nepal. In addition, Zhang 

and Cheng (2009) found a long run unidirectional causal relationship running from economic 

growth to energy consumption and from energy consumption to CO2 emissions in China. A 

study by Saboori, Sapri, and Baba (2014) revealed a positive long run relationship among CO2 

emissions, energy consumption and economic growth in OECD countries. Most recently, a 

provincial analysis was done by Wang, Zhou, Li, and Feng (2016) on the link among GDP, 

energy consumption and CO2 using data related to cement manufacturing and combustion of 

fossil fuels. It is found that cointegration occurs among the three variables with the existence 

of a long run positive relationship. Other researchers such as Apergis and Payne (2009), Baek 

(2015), Nasir and Rehman (2011), and Shahbaz and Lean (2012) have confirmed that energy 

consumption contributes to environmental degradation.  

 

Recently, researchers have pursued the energy-growth-pollution nexus from a general to 

specific manner by studying the energy in the form of renewable energy and non-renewable 

energy. Some of the researches even narrow the focus into different sources of energy, i.e. 

studying the effect of the consumption of natural gas, coal, crude oil, nuclear energy and 

electricity on CO2 emissions. The role of electricity in altering the level of economic growth 

and environmental pollution has attracted much attention of researchers. Similarly, the sources 

of electricity production are decomposed into renewable and non-renewable sources when the 

relationships between electricity production, economic growth and CO2 emissions are studied. 

The renewable electricity sources are found important in reducing CO2 emissions in Portugal, 

Denmark, Spain and USA but the usage of renewable electricity production may decrease 

economic growth at the beginning stage in Denmark, Portugal and Spain (Silva, Soares & 

Pinho, 2012).Similar result has been obtained by Onafowora and Owoye (2015) who studied 

the effect of shocks in the portion of renewable electricity out of total electricity generation on 
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CO2 emissions and economic growth in China, India and Japan over the period of 1970 to 2011. 

Furthermore, Menegaki and Tsagarakis (2015) and Bento and Mountinho (2016) confirmed 

that EKC hypothesis exists in 33 European countries and Italy respectively when the renewable 

energy sources are used. More recently, Al-Mulali, Ozturk and Solarin (2016) discovered that 

the existence of EKC hypothesis is related to the significance of renewable energy consumption 

in reducing CO2 emissions. By studying seven selected regions over the period of 1980 to 2010 

using DOLS and VECM Granger causality, they found that EKC hypothesis is only confirmed 

in five regions in which the renewable energy consumption does contribute to a reduction in 

CO2 emissions. The inverted U-shaped relationship does not exist in Middle East, North Africa 

and Sub Saharan Africa regions as renewable energy consumption has no effect on CO2 

emissions in these regions.  On the contrary, the greater usage of renewable energy sources 

does not improve environmental quality in France but CO2 emissions have motivated the usage 

of renewable energy sources (Marques, Fuinhas & Nunes, 2016). On the other hand, non-

renewable electricity sources have a positive relationship with CO2 emissions in Italy (Bento 

& Mountinho, 2016). However, Menegaki and Tsagarakis (2015) found that EKC hypothesis 

does not exist in the production of fossil energy by using gas and coal in 33 European countries 

over the period 1990 to 2010. 

 

Apart from electricity production from renewable and non-renewable sources, a number of past 

researches have explored the effect of nuclear energy on CO2 emissions. By using panel data, 

many researchers have found that nuclear energy consumption can reduce CO2 emissions, as 

shown by Apergis, Payne, Menyah and Wolde-Rufael (2010) in 19 developed and developing 

countries; Baek and Pride (2014) in six major nuclear generating countries; Baek (2015) in 12 

major nuclear energy consuming countries and Iwata, Okada and Samreth (2011) in 17 OECD 

countries and 11 non-OECD countries. However, mixed results have been found by Al-Mulali 

(2014) who studied the effect of nuclear energy consumption on CO2 emissions in 30 major 

nuclear energy consuming countries. There is a reduction of CO2 emissions in most of the 

countries except France and Sweden. A positive effect is found in Korea Republic instead. 

Besides, Iwata, Okada and Samreth (2012) found similar results by examining 11 OECD 

countries. They revealed that nuclear energy consumption does not have an effect on CO2 

emissions in seven countries other than Finland, Japan, Korea and Spain. For country-specified 

data, nuclear energy is shown to have a favourable impact on CO2 emissions in France (Iwata, 

Okada & Samreth, 2010; Marques, Fuinhas & Nunes, 2016) and Korea (Baek & Kim, 2013) 

in both short run and long run. Similar result has been reached by Menyah and Wolde-Rufael 

(2010) and Baek (2016) in the context of United States by using VAR techniques and ARDL 

approach respectively. However, Jaforullah and King (2015) found that the nuclear energy 

consumption has no relationship with CO2 emissions in United States over the period of 1965 

to 2012 by using VECMs. Table 1 presents a summary of some recent literature on EKC.  

 

[Insert Table 1 here] 

 

3. Data, Model and Results  

 

3.1 Data and variables 

A balanced panel dataset from 1995 to 2013 is constructed for 18 OECD countries. All data 

are retrieved from the World Development Indicator (WDI), World Bank. The selection of 

countries is based on the availability of data, mainly on the electricity production from nuclear 

source. The list of countries, variables and summary statistics are presented in Table 2. 

 

[Insert Table 2 here] 
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3.2 Model Specification 

 

The objective of this study is to examine the EKC hypothesis in the presence of electricity 

production from nuclear energy and non-renewable energy sources. Hence, a panel model 

underlying the EKC hypothesis is specified as follow: 

 

𝐶𝑂2𝑖𝑡  =  𝑓(𝑌𝑖𝑡, 𝑌𝑖𝑡
2, 𝑁𝑈𝐶𝑖𝑡, 𝑁𝑂𝑁𝑅𝑖𝑡, 𝑇𝑂𝑖𝑡, )     (1) 

 

Where CO2 represents CO2 emissions measured in metric ton per capita, Y and Y2 represents 

GDP and GDP2 measured in constant 2010 US$ per capita, NUC is nuclear electricity output 

measured in % of total electricity output, NONR is electricity production from non-renewable 

sources including oil, gas, and coal, and lastly trade openness (TO) measured in % of GDP, 

enters the model as a control variable to avoid bias caused by the omission of relevant variables. 

For the sake of econometric estimation, the model specification mentioned above is estimated 

in natural logarithm form as shown below: 

 

𝑙𝑛𝐶𝑂2𝑖𝑡 =  𝛽0 +  𝛽1𝑙𝑛𝑌𝑖𝑡 +  𝛽2𝑙𝑛𝑌2𝑖𝑡 +  𝛽3𝑙𝑛𝑁𝑈𝐶𝑖𝑡 +  𝛽4𝑙𝑛𝑁𝑂𝑁𝑅𝑖𝑡 +  𝛽5𝑙𝑛𝑇𝑂𝑖𝑡 +
 Ԑ𝑖𝑡 (2) 

 

Since the model is in double log form, the coefficients of the independent variables can be used 

to measure elasticities. Based on the EKC hypothesis, β1 is expected to have a positive sign 

while β2 is expected to have an opposite sign to dictate the inverted U-shaped curve. β3 is 

expected to have a negative sign because renewable electricity production would reduce the 

emissions of CO2. Non-renewable electricity production would increase the CO2 emissions and 

thus β4 is expected to have a positive sign. Lastly, the sign of β5 is ambiguous because of 

inconsistent results from past studies.36 

 

3.3 Estimation Procedures and Results Interpretations 

The empirical analysis begins with the test of stationarity of variables. Three panel unit root 

tests are used in this study, namely LLC, IPS and Fisher ADF panel unit root test. Levin, Lin 

and Chu (2002) extended the time series Augmented Dickey-Fuller (ADF) unit root test to a 

panel framework as follow: 

∆𝑦𝑖𝑡 = ∅𝑖𝑡𝜔𝑖 + 𝜌𝑦𝑖𝑡−1 + ∑ 𝜑𝑖𝑗

𝑛𝑖

𝑗=1

∆𝑦𝑖,𝑡−𝑗 + 𝜀𝑖𝑡                                        (3) 

where ∅𝑖𝑡 considers individual deterministic components and trends, 𝜌  represents the 

autoregressive coefficient, 𝜀𝑖𝑡 is the error term and the lag order which is indicated by 𝑛 . 

However, the LLC test may suffer from the loss of power as the test assumes a constant 

𝜌 across panels. Im, Pesaran, and Shin (2003) relaxed the assumption of the LLC test by 

allowing 𝜌 to be varied across panels. Besides, the Fisher ADF test by Choi (2001) has a 

distinctive feature over the LLC test, that the test uses the time series ADF and Philip-Perron 

(PP) tests as a framework and combines each series p-value resulting from their unit root tests. 

All three tests examine the null hypothesis of non-stationarity of variables.  

 

[Insert Table 3 here] 

 

                                                           
36 A positive relationship between trade and emission is found by Shahbaz et al. (2015) and Atici (2012). However, 

the opposite relationship is proposed by Shahbaz, Lean, and Shabbir (2012), and Shahbaz et al. (2013). 
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Table 3 presents the results of panel unit root tests for the LLC, IPS, and Fisher ADF unit root 

tests. The results show that all variables are not stationary in the level form as the null 

hypotheses of these three test are not rejected based on the test statistics. However, the test 

statistics reject the null hypothesis when the variables are at their first differences. With this, it 

can be concluded that all variables are stationary at first difference or they are integrated at 

I(1).  

 

Next, panel cointegration tests can be utilised after the variables are confirmed to be stationary 

at first difference. This step is done by using Pedroni and Kao tests for cointegration. Pedroni 

(1999, 2004) proposed two sets of panel cointegration tests. The first set is based on the within 

dimension approach which includes four test statistics: panel v-statistic, panel rho-statistic, 

panel PP-statistic, and panel ADF-statistic. These statistics pool the autoregressive coefficients 

across countries for the unit root tests on the estimated residuals by considering common time 

factor and heterogeneity across countries. The second set is based on the between dimension 

approach which consists of three statistics: group rho-statistic, group PP-statistic, and group 

ADF-statistic. These statistics are based on the averages of the individual autoregressive 

coefficients associated with the unit root tests of the residuals for each country. Similarly, Kao 

test uses ADF as a framework and assumes homogeneity in the panels. The t-statistic is derived 

from panel least squared dummy variable analysis.  

 

[Insert Table 4 here] 

 

The results of Pedroni and Kao test for panel cointegration are reported in Table 4. Both tests 

indicate that there is long run cointegration for the variables used in this study as the null 

hypothesis of no cointegration is rejected. In other words, the variables tend to move together 

in the long run. As the variables are confirmed to be cointegrated, the next step is to estimate 

the long run relationship. Two classical estimators are used in this study, namely fully modified 

OLS (FMOLS) and dynamic OLS (DOLS). The FMOLS is a single cointegration equation 

developed by Pedroni (2000). It has the advantages of eliminating the long run correlation 

between the cointegrating variables and stochastic regressors innovations. Moreover, it is 

unbiased and has fully efficient mixture normal asymptotic allowing for standard Wald tests 

using asymptotic Chi-square statistical inference. 

 

Unlike FMOLS, the DOLS uses leads and lags of the first difference regressors for long run 

estimation. According to Kao and Chiang (1999), the finite sample properties of the DOLS are 

superior to the FMOLS by using Monte Carlo simulation. However, both FMOLS and DOLS 

do not provide any short run information. Hence, to obtain short run estimates and ascertain 

the relevance of the findings, Pooled Mean Group (PMG) estimator is added into the analysis. 

Other than providing short run estimates, the PMG estimator can solve the multicolinearity 

problem arises from the EKC framework. 37By using PMG, the inverted U-shaped relation in 

the EKC hypothesis is captured by short run and long run elasticities instead of GDP and GDP 

squared as in FMOLS and DOLS.  

 

[Insert Table 5 here] 

 

From Table 5, it can be noticed that the long run estimates of FMOLS and DOLS are 

complementing each other. First, the EKC hypothesis is supported. This is observed from the 

                                                           
37 See Stern (2004) and Cerdeira Bento and Moutinho (2016) for the critics on the multicolinearity issue and the 

use of ARDL of overcome the problem. 
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expected sign and significance of GDP and its squared term. GDP has the correct positive sign 

and its squared term shows the reverse. This result indicates a turning point for a decrease in 

environmental degradation after certain level of economic growth is achieved. When it comes 

to PMG estimation, the result reveals that economic growth increases CO2 emissions in the 

short run as shown by the sign of D(Y) and it is significant. Then the reverse holds in the long 

run. This suggests that the EKC hypothesis is valid and consistent for all the three estimators. 

In addition, the Error Correction Term (ECT) in the PMG explains the restoration of 

equilibrium in the long run due to short run shock, is adjusted by around 32% in a year.  

 

More interestingly, for the role of nuclear and non-renewable electricity production on CO2 

emissions, the results from all the three estimators are in favour with our prior hypothesis 

formed. Non-renewable electricity production has a significant positive effect on CO2 

emissions. Specifically, 1% increase in non-renewable electricity production increases CO2 

emissions by 0.15%, 0.11%, and 0.08% from FMOLS, DOLS, and PMG respectively. On the 

other hand, nuclear electricity production imposes a significant negative impact on CO2 

emissions. The results from these three estimators indicate that nuclear electricity production 

can be served as a substitute for conventional electricity sources to ensure better environmental 

quality. The estimated coefficients are consistently ranged from -0.02 to -0.03.  

 

Despite using three different estimators, the role of trade openness is found to be ambiguous in 

this study. Using FMOLS and DOLS, it is found that there is a positive effect of trade openness 

on CO2 emissions. This result is not matching with the estimation from the PMG which 

indicates a negative relationship. This implies that the impact of trade openness on CO2 

emissions remains inconclusive and ought to be addressed by future research. 

 

The last part of the analysis concentrates on the direction of causality between the variables by 

using Dumitrescu-Hurlin (D-H) Granger causality test. The D-H causality test has a few 

advantages. First, it can be used in both situations where the number of years is smaller than 

the number of cross sections or vice versa. Second, it can be applied in unbalanced and 

heterogeneous panel even in the presence of cross-sectional dependence. Furthermore, this test 

is more superior as compared to the standard Pairwise Granger causality as it is able to solve 

the bias posed by homogeneity assumption. The results of the D-H causality test are presented 

in Table 6.  

 

[Insert Table 6 here] 

 

From Table 6, it can be concluded that three bidirectional causalities exist between non-

renewable electricity production and CO2 emissions, GDP and non-renewable electricity 

production, as well as electricity production from nuclear source and non-renewable electricity 

production. Other than bidirectional causality, unidirectional causality is found from GDP to 

CO2 emissions, electricity production from nuclear source, and trade openness, from CO2 

emissions to electricity production from nuclear source and lastly from trade openness to CO2 

emissions, non-renewable electricity production, and electricity production from nuclear 

source. A graphical illustration of the direction of causality from Table 6 is presented in Figure 

1. 

 

[Insert Figure 1 here] 
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4. Conclusion and Policy Implications 

The phenomenon of global warming leading to climate change is seen as a worldwide concern. 

Reducing CO2 emissions is considered as the best solution to the problem of global warming. 

In relation to this, nuclear energy has gained global attention as one of the most significant 

means in limiting pollution by providing low-carbon electricity. By employing three panel 

estimators, namely Panel Fully Modified Ordinary Least Squares (FMOLS), Panel Dynamic 

Ordinary Least Squares (DOLS) and Pooled Mean Group (PMG) estimators to check for result 

consistency and robustness, this paper tests the validity of EKC hypothesis in 18 OECD 

countries with the inclusion of electricity production from nuclear energy and non-renewable 

energy sources for the period 1995-2013. The empirical evidence shows that an inverted U-

shaped EKC does exist in OECD countries, confirming that pollution increases with income 

level during early stage of economic development and subsequently declines as income reaches 

a threshold. As expected, it is found that nuclear energy, as a so called clean energy, contributes 

to better environmental quality by lowering CO2 emissions. However, electricity production 

from non-renewables such as fossil fuels tends to worsen the environmental degradation. It is 

worth highlighting that the above results are consistent for all methods used, suggesting that 

our findings are robust.  

 

Several important policy implications can be drawn from the results obtained. First, it is vital 

for the policy makers of OECD countries to design growth-oriented policies and strategies in 

order to reduce CO2 emissions persistently in these countries. For instance, growth–oriented 

fiscal and monetary packages can be designed and implemented as an extra effort to further 

stimulate economic growth. As income rises in these countries, there would be a switch towards 

information-based industries and services, improved environmental awareness, enforcement of 

stricter environmental laws and adoption of clean technologies that would further lead to a 

reduction in CO2 emissions. Second, as electricity production using fossil fuels is harmful to 

the environment in these OECD countries, policy makers should design energy policies in such 

a way that aim to regulate and further discourage the adoption of fossil fuels at power plants. 

Third, it is necessary for OECD countries to increase investment in nuclear energy particularly 

in electricity production since it decreases CO2 emissions. In other words, nuclear power should 

be considered as the key energy source in the future low-carbon electricity generation mix of 

OECD countries. 

Despite the fact that nuclear power is a low-carbon electricity supply, it is important to note 

that the generation of electricity using nuclear energy requires special attention on safety issues. 

For instance, issues pertaining to radioactive waste management and nuclear installation should 

be treated with due care in order to avoid any accident that may potentially harm the 

environment and human health. 
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Table 1: Some Recent EKC Studies 

Authors Countries/ 

Regions 

Period Methodolog

y  

Variables 

(CO2 as 

dependent) 

Major Findings 

Zoundi 

(2016) 

25 African 

countries 

1980-

2012 

DOLS, 

GMM, DFE, 

PMG and 

MG 

GDP, Renewable 

energy 

consumption, 

Primary energy 

EKC is not supported. 

Renewable energy 

consumption has a negative 

effect on CO2 emissions. 
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consumption, and 

population growth 

 

Alam et al. 

(2016) 

India, 

Indonesia, 

China, and 

Brazil 

 

1970-

2012 

ARDL Income, energy 

consumption, and 

population growth 

 

EKC is confirmed in 

Brazil, China, and 

Indonesia only.  

Bilgili et 

al. (2016) 

17 OECD 

countries 

1977-

2010 

FMOLS and 

DOLS 

GDP, GDP2, and 

renewable energy 

consumption 

EKC is valid. Renewable 

energy consumption has 

negative relationship with 

CO2 emissions. 

 

Chiu 

(2017) 

99 countries 1971-

2010 

Non-linear Income, energy, 

and investment 

 

EKC is supported.  

Baek 

(2016) 

United States 1960-

2010 

ARDL Nuclear energy 

consumption, 

renewable energy 

consumption, 

income 

EKC is found in the short 

run. Income increases CO2 

emissions in the long-run. 

Energy consumption 

reduces CO2 emissions in 

the short- and long-run. 

 

Bento and 

Moutinho 

(2016) 

Italy 1960-

2011 

ARDL GDP, non-

renewable and 

renewable 

electricity 

production, and 

trade 

 

EKC is confirmed. 

Renewable electricity 

production reduces. CO2 

emissions 

Al-mulali 

et al. 

(2016) 

7 regions 1980-

2010 

DOLS Renewable energy 

consumption 

 

Renewable energy is 

significant in the EKC 

hypothesis. 

 

Li et al. 

(2016) 

28 provinces 

in China 

1996-

2012 

GMM and 

ARDL 

GDP, energy 

consumption, trade, 

and urbanization  

EKC is valid. 

 

 

  



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

145 

 

Table 2: Summary Statistics 
Country  Statistics CO2 

emissions 

(metric ton 

per capita) 

GDP per 

capita 

(constant 

2010 US$) 

Electricity 

production 

from nuclear 

(% of total 

electricity 

output) 

Electricity 

production 

from non-

renewable 

energy  

(% of total 

electricity 

output) 

Trade 

openness 

(% of 

GDP) 

Belgium Mean 10.3100 35097.71 55.6773 39.0637 140.3248 

Std. Dev. 1.0364 9527.46 2.9495 2.5066 15.3602 

Min. 8.2848 23121.57 49.3684 31.9263 115.5111 

Max. 

 

11.6238 48424.59 60.8880 42.0420 163.9951 

Canada Mean 16.0704 34297.48 14.2020 24.6089 69.7406 

Std. Dev. 1.2192 12231.79 1.4838 2.5628 7.0789 

Min. 13.5323 20577.49 12.0210 20.6928 58.3482 

Max. 

 

17.4639 52496.70 17.4720 28.9542 82.8577 

Czech 

Republic 

Mean 11.3526 12802.91 27.3241 67.8567 110.7577 

Std. Dev. 0.9124 6432.72 6.2187 7.9372 22.6398 

Min. 9.3835 5765.05 18.6392 53.4401 81.7504 

Max. 

 

12.3653 22649.38 35.6836 78.2200 147.9782 

Finland Mean 11.0563 36751.68 30.3091 38.2235 73.5849 

Std. Dev. 1.2403 10858.53 2.1554 5.9151 6.6933 

Min. 8.5126 24253.25 26.4616 26.0030 64.0692 

Max. 

 

13.2611 53401.31 33.1280 49.9277 86.5119 

France Mean 5.8035 33112.58 77.5548 9.1982 52.4613 

Std. Dev. 0.4061 8272.37 1.3823 0.9279 4.6441 

Min. 5.0505 22465.64 74.3033 7.6830 43.2720 

Max. 

 

6.2805 45413.07 79.5118 10.8015 59.2004 

Germany Mean 9.8499 34747.17 25.4678 62.2912 66.7357 

Std. Dev. 0.5578 8167.93 4.8908 2.0014 13.9550 
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Min. 8.8147 23687.32 15.3710 59.2383 43.5447 

Max. 

 

10.8602 46807.42 31.0811 65.4127 85.8748 

Hungary Mean 5.4317 9309.24 39.7972 56.3077 131.6883 

Std. Dev. 0.5146 4125.68 4.084 6.7131 28.0932 

Min. 4.1889 4481.41 32.2536 39.6157 78.4848 

Max. 

 

6.0187 15669.26 50.7411 66.6657 168.2131 

Japan Mean 9.4999 38527.77 23.6005 66.6612 24.8029 

Std. Dev. 0.2915 4856.74 9.2715 8.3792 5.9642 

Min. 8.6194 31902.77 0.8786 58.3331 16.6795 

Max. 

 

9.9092 48629.20 31.7328 86.9730 34.3990 

Korea, Rep. Mean 9.9281 16884.31 35.0487 63.5526 77.1786 

Std. Dev. 1.1466 5519.25 4.3894 4.4218 18.4347 

Min. 7.8820 8133.73 25.8015 54.4428 54.3156 

Max. 

 

11.8402 25997.88 43.7460 72.3371 110.0000 

Mexico Mean 3.8200 7336.25 4.2238 78.9794 54.8669 

Std. Dev. 0.1644 1994.75 0.9455 4.1500 5.8043 

Min. 3.4767 3640.83 2.1337 70.3395 46.1116 

Max. 

 

 

4.1270 10198.65 6.2426 83.4284 66.4083 

Netherlands Mean 10.5554 39317.13 3.9236 88.3554 125.4671 

Std. Dev. 0.3117 11412.72 0.5686 3.3386 14.1168 

Min. 10.1092 25921.13 2.7830 82.2533 108.3758 

Max. 

 

11.2778 56928.82 4.9503 93.4387 154.2709 

Slovak 

Republic 

Mean 7.0507 11029.27 52.5304 30.4526 139.0511 

Std. Dev. 0.2549 5496.24 5.1363 5.5097 26.9405 

Min. 6.0590 4799.15 43.2761 26.2267 99.3564 

Max. 

 

7.8544 18650.36 58.0772 39.5681 183.4055 
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Slovenia Mean 7.6686 17217.97 36.5824 37.1042 114.9197 

Std. Dev. 0.3747 6246.43 1.5501 1.5613 18.3663 

Min. 7.0102 10227.74 33.5252 34.1072 92.6291 

Max. 

 

8.5864 27501.87 39.0512 40.0000 144.7576 

Spain Mean 6.7900 23505.55 24.2247 53.8061 54.3095 

Std. Dev. 0.9306 7604.87 5.0700 6.5716 4.6410 

Min. 5.0830 14676.71 18.0769 40.0188 44.8303 

Max. 

 

8.0970 35578.74 33.4881 63.6383 61.1831 

Sweden Mean 5.6373 41687.12 44.8009 3.8667 81.3006 

Std. Dev. 0.5250 11894.48 4.2690 1.7542 7.1068 

Min. 4.6172 26969.24 38.1929 1.6944 67.4888 

Max. 

 

6.4342 60283.25 52.8163 8.7295 93.3591 

Switzerland Mean 5.4066 57042.97 40.8346 1.6594 101.7237 

Std. Dev. 0.3711 16925.55 2.1528 0.2972 15.6035 

Min. 4.6720 37813.23 37.3363 1.1860 77.3043 

Max. 

 

5.9398 88002.61 44.7711 2.3931 132.4984 

United 

Kingdom 

Mean 8.5903 35336.10 21.5926 72.9966 53.7845 

Std. Dev. 0.7822 8328.80 4.1845 3.6715 4.6054 

Min. 7.0810 22755.56 13.6396 64.4632 48.6229 

Max. 

 

9.4802 49949.15 28.1076 80.2219 65.7065 

United States Mean 18.8153 41475.27 19.4109 70.4645 25.5800 

Std. Dev. 1.2611 7687.17 0.5790 1.3900 3.1523 

Min. 16.2871 28782.78 18.1461 67.8246 22.1497 

Max. 

 

20.2076 52749.91 20.6470 72.1990 30.8851 

All countries Mean 9.0909 29192.92 32.0781 48.0805 83.2377 

Std. Dev. 3.7845 16.47.18 18.2904 25.9790 38.8260 

Min. 3.4767 3640.83 0.8786 1.1860 16.6795 

Max. 20.2076 88002.61 79.5118 93.4387 183.4055 
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Table 3: Panel Unit Root Tests  

 LLC IPS Fisher ADF 

Level 

(trend and 

intercept) 

First 

difference 

(intercept) 

Level 

(trend and 

intercept) 

First 

difference 

(intercept) 

Level 

(trend and 

intercept) 

First 

difference 

(intercept) 

CO2 -0.2602 

(0.3973) 

(1) 

-

15.2393*** 

(0.0000) 

(2) 

0.1609 

(0.5639) 

(3) 

-

13.7715*** 

(0.0000) 

(2) 

39.9290 

(0.2997) 

(3) 

222.3570*** 

(0.0000) (2) 

Y 0.0943 

(0.5376) 

(0) 

-9.6692*** 

(0.0000) 

(2) 

-1.2583 

(0.1041) 

(1) 

-6.6889*** 

(0.0000) 

(2) 

 41.8078 

(0.2332) 

(1)  

107.411***  

(0.0000) (2) 

Y2 -0.0649  

(0.4741) 

(0) 

-9.7559***  

(0.0000) 

(2) 

-1.2613 

(0.1036) 

(1) 

-6.8184*** 

(0.0000) 

(2) 

41.7695 

(0.2344) 

(1) 

109.3170*** 

(0.0000) (2) 

NUC 0.0063 

(0.5025) 

(1) 

-

18.5146*** 

(0.0000) 

(3) 

-0.3403 

(0.3668) 

(1) 

-

16.0752*** 

(0.0000) 

(3) 

45.4800 

(0.1337) 

(1) 

259.084*** 

(0.0000) (3) 

NONR 4.6969 

(1.0000) 

(3) 

-

10.5920*** 

(0.0000) 

(3) 

-0.6492 

(0.2581) 

(1) 

-

10.6461*** 

(0.0000) 

(3) 

40.7491 

(0.2694) 

(0) 

180.688*** 

(0.0000) (3) 

TO 0.6258 

(0.7343) 

(3) 

-

16.2590*** 

(0.0000) 

(1) 

-0.8442 

(0.1993) 

(3) 

-

12.6641*** 

(0.0000) 

(1) 

44.9871 

(0.1448) 

(0) 

198.332*** 

(0.0000) (1) 

Note: LLC, IPS, and Fisher ADF indicate the Levin et al. (2002), Im et al. (2003), 

Maddala and Wu (1999) panel unit root and stationary tests. All three tests examine 

the null hypothesis of non-stationary. *, ** and *** represent the rejection of null 

hypothesis at 10%, 5% and 1%. The figures without bracket is the test statistic value, 

the first bracket shows the probability value, while the subsequent bracket shows the 

lag length selected based on SIC. The probability values for the Fisher ADF are 

computed using asymptotic χ2 distribution, while the rest follow the asymptotic 

normal distribution. 
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Table 4: Panel Cointegration Tests 

Pedroni  

Panel cointegration statistics (within-

dimension) 

 

Panel v-statistic -1.7003(0.9555) 

Panel rho-statistic 1.9851 (0.9764) 

Panel PP-statistic  -5.1414*** (0.0000) 

Panel ADF-statistic -4.2900*** (0.0000) 

  

Group mean panel cointegration statistics 

(between-dimension) 

 

Group rho-statistic 3.0426 (0.9988) 

Group PP-statistic   -5.9121*** (0.0000) 

Group ADF-statistic -4.6435*** (0.0000) 

  

Kao  

ADF -2.4323*** (0.0075) 

Note: Both tests examine the null hypothesis of no cointegration for the variables. 

*** indicates the rejection of null hypothesis at 1%. The figures without bracket 

represent test statistic values. Probability values are shown in the bracket. The lag 

length is selected automatically based on SIC.  
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Table 5: Panel Long Run and Short Run Estimation 

Dependent: CO2 FMOLS DOLS PMG 

Independent 

variable 

Coefficient 

(t-stat) (p-value) 

Coefficient 

(t-stat) (p-value) 

Coefficient 

(t-stat) (p-value) 

Y 0.7967*** 

(3.1166) (0.0020) 

0.7280*** 

(3.2211) (0.0015) 

-0.1537*** 

(-7.4076) (0.000) 

Y2 -0.0353*** 

(-2.7385) (0.0066) 

-0.0326*** 

(-2.8783) (0.0045) 

- 

NONR 0.1538*** 

(7.3652) (0.0000) 

0.1061*** 

(3.8690) (0.0002) 

0.0816*** 

(3.2846) (0.0012) 

NUC -0.0311** 

(-2.3814) (0.0180) 

-0.0179** 

(-2.2106) (0.0284) 

-0.0207** 

(-2.0027) (0.0464) 

TO 0.0990*** 

(3.2029) (0.0015) 

0.0596*** 

(3.6504) (0.0003) 

-0.0835*** 

(-2.7991) (0.0056) 

    

Short Run 

Equation 

   

ECT(-1)   -0.3235*** 

(-4.8711) (0.0000) 

D(Y)   0.1689*** 

(4.3723) (0.0000) 

D(NONR)   0.3402** 

(2.1510) (0.0325) 

D(NUC)   0.0253 

(0.1842) (0.8540) 

D(TO)   0.1356*** 

(4.0692) (0.0001) 

C   1.2304*** 

(4.8155) (0.0000) 

Note: *,** and *** indicate significance at 10%, 5%, and 1% respectively. 
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Table 6: Dumitrescu-Hurlin Granger Causality Test  

Null hypothesis Prob. Conclusion 

Y does not homogeneously cause CO2 0.0000*** Unidirectional 

causality from 

Y to CO2 
CO2 does not homogeneously cause Y 0.3946 

   

NONR does not homogeneously cause CO2 0.0177** Bidirectional 

causality 

between 

NONRENEW 

and CO2 

CO2 does not homogeneously cause NONR 0.0000*** 

   

NUC does not homogeneously cause CO2 0.9573 Unidirectional 

causality from 

CO2 to NUC 
CO2 does not homogeneously cause NUC 0.0000*** 

   

TO does not homogeneously cause CO2 0.0000*** Unidirectional 

causality from 

TO to CO2 
CO2 does not homogeneously cause TO 0.4394 

   

NONR does not homogeneously cause Y 0.0350** Bidirectional 

causality 

between Y and 

NONR 

Y does not homogeneously cause NONR 0.0000*** 

   

NUC does not homogeneously cause Y 0.5706 Unidirectional 

causality from 

Y to NUC 
Y does not homogeneously cause NUC 0.0000*** 

TO does not homogeneously cause Y 

Y does not homogeneously cause TO 

0.2480 

0.0005*** 

Unidirectional 

causality from 

Y to TO 

NUC does not homogeneously cause NONR 

NONR does not homogeneously cause NUC 

 

0.0641* 

0.0226** 

Bidirectional 

causality 

between NUC 

and NONR 
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TO does not homogeneously cause NONR 

NONR does not homogeneously cause TO 

 

0.0000*** 

0.1478 

Unidirectional 

causality from 

TO to NONR 

TO does not homogeneously cause NUC 

NUC does not homogeneously cause TO 

0.0075*** 

0.6877 

Unidirectional 

causality from 

TO to NUC 

Note: *,** and *** denote rejection of null hypothesis at 10%, 5% and 1% respectively. The 

optimal lag length is 2, the results for Y2 is not reported. However, it will be made available 

upon request. 
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Figure 1: Direction of causality 
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Abstract 

This paper proposes a novel futures market efficiency index that measures the ability for price discovery 

of a long-term futures contract on its nearby short-term contract, accounting for heteroscedastic prices 

and time varying risk premiums using crude oil, natural gas, heating oil and gasoil futures during 1990 

– 2016.  The spillover dynamics of information across futures markets is investigated using 

conditionally heteroscedastic common factors extracted for each commodity from the estimated term-

premiums. Evidence of variation in efficiency across terms and commodities along with significant 

delayed, contemporaneous, and potential information spillovers among term premiums can help 

investors to optimally diversify their portfolios. 

 

Keywords: Futures efficiency, Term premium, Energy futures, Efficiency index, Time-varying risk 

premium. 
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1. Introduction 
 

The strand of literature on testing the efficient market hypothesis (EMH) was originated with the 

seminal work of Fama (1965) who used the random walk definition of market efficiency. The EMH is 

based on the principal that prices of an asset reflect all publicly available information. Samuelson (1965) 

pioneered testing of the futures market efficiency using the martingale definition of efficiency. 

Subsequently, several authors proposed various test procedures for testing the efficient futures market 

hypothesis (EFMH) which is based on the definition that a futures market is efficient under the joint 

assumption of risk neutrality and rationality if the current futures price of an asset for delivery at a 

specified date in the future is an unbiased predictor of the future spot price. Among the many approaches 

used to investigate the efficiency of commodity markets, efficiency tests based on price discovery 

(specifically cointegration based approaches) seem to be popular in the literature. See for example, 

Hansen and Hodrick (1980), Bilson (1981), Longworth (1981), Baillie (1989), Boothe and Longworth 

(1986), Chowdhury (1991), Chung (1991), Luo (1998), Lee and Mathur (1999), Wang and Ke (2005), 

Switzer and El-Khoury (2007), Joyeux and Milunovich (2010), Arouri et al. (2013), Narayan, Liu, and 

Westerlund (2015), among others. These conventional market efficiency tests assume a constant risk 

premium and homoscedastic futures prices, that is, these tests ignore the information contained in the 

heteroscedasticity of prices and time-varying risk premiums. Westerlund and Narayan (2013) propose 

a more powerful test using the WLS (weighted least square) model which accounts for heteroscedastic 

prices, but they assume a constant risk premium in their model. Kuruppuarachchi et al. (2017) introduce 

a more general futures market efficiency test accounting for both heteroscedastic prices and time-

varying risk premiums. However, applications of these tests so far have mostly been focussed on 

investigating the market efficiency of a single security (commodity) during a given time period.  

 

Market efficiency indices are used to investigate the overall efficiency of a group of securities (or 

portfolio of securities) such as market sectors, exchanges etc., however such indices are sparse in the 

literature. This study addresses the gap in the literature by proposing a novel futures market efficiency 

index.  Kristoufek and Vosvrda (2013) introduce such an index for capital markets taking into 

consideration the correlation structure of the returns i.e., the long- and short-term memory. They extend 

the index for the futures market in Kristoufek and Vosvrda (2014) and use it to analyze the market 

efficiencies of 25 commodity futures. To the best of the authors’ knowledge, this is the only such index 

we could find in the literature. Their index is based on the martingale definition of efficiency which 

assumes that the returns of a financial asset in an efficient market are serially uncorrelated with a finite 

variance. Furthermore, their approach doesn’t take into account the information on the time varying 

risk premiums and the heteroscedasticity of prices. Brenner and Kroner (1995) document that serially 

correlated risk premiums in futures market efficiency tests which are based on the martingale property 

of prices, may produce misleading results. The proposed index in this paper overcomes such drawbacks.  

 

The proposed efficiency index is based on the price discovery from long- to short-term futures (similar 

to the concept of nearby futures to the spot price) across the term structure of the underlying futures. 

This is a significant novelty feature of the index. That is, the index corresponding to a futures contract 

is calculated by repeatedly applying the futures market efficiency test proposed in Kuruppuarachchi et 

al. (2017) between short- and long-term maturity futures price series across the term structure while 

estimating the term-premium of the underlying commodity. The term-premium is defined as the 

expected excess return between the current long-maturity futures price and the expected future short-

maturity futures price on the next maturity date. Recent studies such as Chaves (2017) extends the 

literature on futures risk premiums using its term structure and documents that the term structure of 

futures prices has a strong impact on the returns earned by the investors in those markets. Chaves (2017) 

also reports that the term structure of futures prices contains significant information corresponding to 

the time-varying risk premiums between nearby maturities. Furthermore, the proposed efficiency index 

depicts the magnitude of the consistency of the market efficiency along the futures term structure as it 

repeatedly tests the market efficiency across the term structure. The index helps investors to understand 

the ability of price discovery of the underlying commodity across terms and hence is practically very 

appealing (see for example Baruník and Malinská,  2016). 
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We also extract a conditionally heteroscedastic principal component common factor (CHCF) of the 

term-premiums for each commodity using the Kuruppuarachchi et al. (2016) approach. These CHCFs 

are used to investigate the spillover effects of the macroeconomic shocks on the term-premiums of one 

commodity on another. Such an investigation can help investors to determine the exposure of their 

investments to macroeconomic risks. 

 

The proposed index is used to investigate the market efficiencies of four major energy futures, namely 

WTI crude oil, heating oil, natural gas, and gasoil. Daily futures prices were collected over the sample 

period January 1990 – December 2016 from Bloomberg which includes the term structures of each 

contact from 1 to 12 months prior to maturity, respectively. 

 

We document some interesting results in this paper. First, the degree of market efficiency is varying 

across energy commodities and the highest efficiency is recorded by the gasoil futures traded at ICE. 

This implies that the price discovery along the term structures is not consistent among commodity 

futures in the energy sector. Second, CHCFs of term premiums indicate both delayed and 

contemporaneous information spillovers among the commodity futures in the energy sector. Volatility 

and extreme risks corresponding to CHCFs of term premiums in crude oil, natural gas, and gasoil futures 

tend to transmit information across them. These results elaborate on how investors’ sentiment for 

perceived investment risk behaves in the energy sector futures. 

 

The remainder of the paper is organized as follows. Section 2 explains the methodology including the 

construction of market efficiency index and computation of CHCF of futures term premiums. Section 

3 presents data and summary statistics while section 4 presents numerical results obtained for market 

efficiency and risk premiums. Section 5 concludes the paper. 

 

2. Methodology 
 

2.1 Computing the Consistence Efficiency Index 

We define the log price of a long-maturity futures contract ( 𝑡ℎ𝑒 𝑁𝑡ℎ period contract) at time 𝑡 with N 

months to maturity as 𝑓𝑁(𝑡) and the log price of a short-maturity futures contract (𝑡ℎ𝑒 (𝑁 − 1)𝑡ℎ 

period contract) at time 𝑡 + 1 with 𝑁 − 1 months to maturity as 𝑓𝑁−1(𝑡 + 1). According to the risk 

premium theory, the expected log price of the (𝑁 − 1)𝑡ℎ period futures contract, 𝐸𝑡[𝑓𝑁−1(𝑡 + 1)], is 

equal to its current log price corresponding to (𝑁)𝑡ℎ contract, 𝑓𝑁(𝑡), plus an expected return premium 

(or price discount), 𝐸[𝜋𝑁(𝑡 + 1)], as illustrated by equation (1),  

𝐸𝑡[𝑓𝑁−1(𝑡 + 1)] = 𝑓𝑁(𝑡) + 𝐸[𝜋𝑁(𝑡 + 1)], (1) 

where 𝑁 is the term (number of months to maturity) such that  𝑁 = 1, … . . , 12 and 𝜋𝑁(𝑡 + 1) is the 

term-premium (risk premium) between the consecutive short- and long-maturity futures contracts. 

 

Thus, the one-period expected term-premium is identical to 𝐸[𝜋𝑁(𝑡 + 1)] = 
𝐸[𝑓𝑁−1(𝑡 + 1)] − 𝑓𝑁(𝑡)  which depicts the roll yield between two consecutive futures contracts. 

Similarly, the price of a short-term contract, 𝑓0(𝑡), can be used to determine the expected value of the 

spot price at the expiration, 𝑠(𝑡 + 1), such that, 𝐸𝑡[𝑠(𝑡 + 1)] = 𝑓0(𝑡) + 𝐸[𝜋1(𝑡 + 1)] according to 

Fama and French (1987). Moreover, since the spot prices are imprecise or simply unavailable in the 

case of commodities, we use the price of the nearby contract, denoted by 𝑓0(𝑡), as a proxy for the spot 

price following Fama and French (1987). 

 

Conventional EFMH is based on the principle that the futures price is the market expectation of a spot 

price at some future time. Following this principal, Kawamoto and Hamori (2011) document that long-

maturity futures price can be considered as the market expectation of a short-maturity futures price at a 

future time. By repeatedly applying a market efficiency test between short- and long-maturity futures 
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they tested for the consistency of efficiency in a futures market. We extend this line of research to 

develop the proposed efficiency index by using the market efficiency test proposed in Kuruppuarachchi 

et al. (2017) as stated by equations (2a) – (2e). In this state-space model the term- premium, 𝜋𝑁(𝑡 + 1), 

is assumed to be time varying according to an AR(1) process as stated in equation (2b) and the futures 

prices are heteroscedastic following a GARCH process. We use to test One-period market efficiency is 

tested using the efficiency test in (2), that is, the market efficiency of the (𝑁)𝑡ℎ period futures contract 

price on its (𝑁 − 1)𝑡ℎ period futures contract price. The test involves two-steps, namely (i) testing for 

the cointegration relationship between the two futures price series 𝑓𝑁−1(𝑡 + 1) and  𝑓𝑁(𝑡) and (ii) 

testing the hypothesis 𝛽1 = 1. Tests of one-period market efficiency simultaneously estimate the term 

premium, 𝜋𝑁(𝑡 + 1).   

 

𝑓𝑁−1(𝑡 + 1) = 𝛽1𝑓𝑁(𝑡) + 𝜋𝑁(𝑡 + 1) + 𝜀(𝑡 + 1)  (2a) 

𝜋𝑁(𝑡 + 1) = 𝛾0 + 𝛾1𝜋𝑁(𝑡) + 𝜂(𝑡 + 1) (2b) 

(
𝜀(𝑡 + 1)
𝜂(𝑡 + 1)

) ~𝑁 [(
0
0

) , (
𝜎2(𝑡 + 1) 𝐶

𝐶 𝑄
)]  (2c) 

𝜀(𝑡 + 1) = 𝜉(𝑡 + 1)𝜎(𝑡 + 1)  (2d)  

𝜎2(𝑡 + 1) = 𝜑0 + 𝜑1𝜀2(𝑡) + 𝜑2𝜎2(𝑡)   (2e)   

 

In order to calculate the proposed efficiency index, we repeat the one-period efficiency test for all the 

𝑁𝑡ℎ period futures contracts of a commodity i.e., 𝑁 = 1, … .12, and define an efficiency indicator 𝐼(𝑁) 

such that, 𝐼(𝑁) = 1, if the efficient market hypothesis is accepted at the 𝛼 level of significance for the 

𝑁𝑡ℎ  period futures contract, 𝐼(𝑁) = 0  otherwise. The consistent efficiency index ( 𝐶𝐸𝐼 ) for a 

commodity future is defined as the weighted average of the efficiency indicator values, 𝐼(𝑁) and is 

given by equation (3). 

 

 𝐶𝐸𝐼 =
∑ 𝐼(𝑁)12

𝑁=1 𝑊(𝑁)

∑ 𝑊(𝑁)12
𝑁=1

                     (3) 

 

In equation (3), 𝑊(𝑁)  is the weight assigned for the market efficiency of the 𝑁𝑡ℎ  period futures 

contract (i.e., the futures contract with 𝑁-months to maturity). 𝐶𝐸𝐼 can take a maximum value of 1, if 

it is efficient at all terms 𝑁 = 1, … ,12, and a minimum value of zero, otherwise. According to the 

rational expectation of futures prices, the probability of a market efficiency hypothesis being accepted 

for an 𝑁𝑡ℎ period contract, Pr{𝐼(𝑁) = 1}, is an increasing function of decreasing 𝑁. Therefore, we use 

a Daniel kernel weight 38  in (3) defined as  

𝑊(𝑁) = 𝑠𝑖𝑛 (𝜋
𝑁−0.5

12
) (𝜋

𝑁−0.5

12
)⁄ , following Priestley’s theory of spectral analysis (1981).  

 

2.2 Computing the Risk Premium CHCF 

The building blocks to extract the information contained in the term structure of futures contracts are 

roll yields, estimated from the underlying risk premiums between two consecutive futures contracts, 

𝜋𝑁(𝑡 + 1) in equation (2b). The roll yield has a positive sign when the futures term structure curve is 

downward sloping (backwardation) and a negative sign when the curve is upward sloping (contango). 

Contango hurts the performance of long positions in futures, because futures prices tend to fall over 

time (negative roll yield and return). Backwardation is beneficial to investors with long positions in 

futures, because futures prices have a tendency to move up over time (positive roll yield and return) 

(Chaves, 2017).  Moreover, 𝜋𝑁(𝑡 + 1) − 𝜋𝑁(𝑡 + 1) represents the additional risk premium earned by 

buying a long-term instrument relative to buying the nearby short-term instrument.  

 

                                                           
38 We have selected the squared Daniel kernel function because of its performance and relevance experienced 

during the analysis.   
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In this paper, we extract a principle component common factor for each of the energy futures using the 

respective term-premiums over a one-year period.  This common factor represents the systematic risk 

component of the term-premiums of the underlying energy futures. That is, we estimate 𝜋𝑁(𝑡 + 1) for 

all 𝑁 = 1, … ,12 using equation (2b) and then adopt the method developed in Kuruppuarachchi et al. 

(2016) to compute the common factor of term premiums. Compared to the usual principal components 

this approach accounts for the heteroscedastic properties of the underlying term-premiums. Hence, these 

common factors are referred to as conditionally heteroscedastic common factors (CHCFs).  

 

Let, Ψ(𝑡) be the vector of a cross section of 𝑁 number of term-premiums. Kuruppuarachchi et a. (2016) 

defines the CHCF of Ψ(𝑡) as 𝑀(𝑡) by eliminating the idiosyncratic variations, 𝑒(𝑡) of the series of 

Ψ(𝑡) as in (4a) 

 Ψ(𝑡) = 𝑀(𝑡)Λ′ + 𝑒(𝑡) (4a) 

Here, Λ is the factor loading matrix obeying the rule 
Λ′Λ

𝑁
= Ι, where Ι is an identity matrix. Moreover, 

𝑣𝑎𝑟[𝑀(𝑡)] = 𝑅(𝑡), 𝑣𝑎𝑟[Ψ(𝑡)] = Σ(𝑡), and 𝑣𝑎𝑟[𝑒(𝑡)] = Ω(𝑡) , satisfy equation  (4b) 

 Σ(𝑡) = Λ(𝑡)𝑅(𝑡)Λ′(t) + Ω(𝑡) (4b) 

Kuruppuarachchi et al. (2016) estimate Σ(𝑡) using the dynamic conditional correlation (DCC-GARCH) 

specification in Engle (2002).39 Hence, the percentage of variation, 𝐸[𝑉(𝑡)], explained by the extracted 

common factor 𝑀(𝑡) at time t, is also time-varying. 

 

3. Data and Summary Statistics 
 

We retrieve energy futures data from Bloomberg over the period January 1990 to December 2016. The 

data includes the term structures of each contract extending from 1 month to 12 months prior to 

maturity. Our sample of commodity futures includes WTI crude oil, heating oil, natural gas traded on 

the Chicago Mercantile Exchange (CME), and gasoil traded on the Intercontinental Exchange (ICE). 

The monthly data sets are organized by the price at the maturity date for each 𝑁 where 𝑁 = 1, … ,12. 

Log price series for each maturity period is used for the analysis. Table 1 presents the summary statistics 

of prices of all the energy futures contracts in the sample. 

<Insert Table 1 here > 

 

In Table 1 the average price at maturity is typically less than the prices at different maturity terms 

implying a long-term contango effect.40 WTI crude oil indicates its highest average price over 3-5 month 

terms while all other energy commodities report increasing averages corresponding with maturity terms. 

All the series in the sample are unit root and heteroscedastic.41 Therefore, we use log prices and log 

returns which are stationary to measure continuous compounded returns.  

 

4. Numerical results 
 

Each panel of Table 2 illustrates the results corresponding to the first and the second steps of the market 

efficiency test (see columns 2 and 3), value of the indicator function (column 4), and the average 

(column 9) and the standard deviations (column 10) of the estimated term-premiums for each 

commodity at each term to maturity, 𝑁, in the sample. Commodity CEIs for are reported at the end of 

each panel, respectively. It is evident from the Panel D of Table 2 that gasoil futures traded on the ICE, 

report efficiency at all terms i.e., N = 1, ….12 and have the highest consistent efficiency level (𝐶𝐸𝐼𝑄𝑆 =

1.00) compared to other commodity futures in Panels A to C of Table 2. The high efficiency of these 

contracts reflects their importance as an efficient hedging and trading mechanism.  

 

<Insert Table 2 here > 

 

                                                           
39 See Kuruppuarachchi and Premachandra (2016) for more details in estimating CHCFs 
40 One exception is the Gasoil mean futures contract price at maturity is U$388.90 and the one month contract 

price is U$388.51. 
41 These results are not presented here to conserve the space but available upon request. 
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Heating oil traded on the CME in Panel B has the second highest consistent efficiency (𝐶𝐸𝐼𝐻𝑂 =
0.8591) while WTI crude oil futures traded on the CME in Panel A has the third highest value, the 

efficiency index is 𝐶𝐸𝐼𝐶𝐿 = 0.6913. Natural gas futures traded on the CME in Panel C indicates the 

lowest consistent efficiency (𝐶𝐸𝐼𝑁𝐺 = 0.4005) when compared to the other futures in the sample. 

 

Graphs of the average and the standard deviation of the estimated risk premiums at each month to 

maturity, for each commodity in the sample are given in Figure 1. Average risk premiums are similar 

for contracts with 12 months prior to maturity. The difference in the average premium increases as the 

contracts move closer to maturity. Natural gas shows the greatest change in the mean risk premium 

varying from 0.2817%, one month prior to maturity to −0.0288% with nine months remaining to 

maturity. ICE gasoil has the lowest change in mean risk premium, moving from 0.0220% at seven 

months until maturity and −0.0293% with one month to maturity. The higher mean risk premiums for 

contracts closer to maturity suggest that a strategy of buying the short-term futures contract and selling 

the long-term futures contract when the risk premium is negative is lucrative for investors (Chaves, 

2017). 

<Insert Figure 1 here > 

The annualized standard deviation of the risk premium for each commodity increases as the contract 

approaches maturity. Great standard deviation implies more uncertainly and suggests greater risk 

exposure for investors. Natural gas demonstrates the greatest shift in volatility. Annualized standard 

deviation changes from 1.1208% for one month contracts to 0.2149% for 11 month contracts. WTI 

crude oil risk premiums are also quite volatile, varying from 0.4925% at one month to maturity out to 

0.0588% for futures maturing in 7 months. ICE Gasoil volatility is less marked, moving between 

0.3372% and 0.0849% for one month and 11 month contracts, respectively. Heating oil has a similar 

increase in volatility over the 12 month maturity period. Heating oil risk premium standard deviation is 

greatest for three month contracts (0.3271%) and lowest for contracts with 12 months to maturity 

(0.0680%). Consistent with Chaves (2017) the commodity risk premium graphs show that the risk 

premiums are time varying and depend on the yield spread.  

 

4.1 CHCFs of the Energy Futures 
 

We compute a CHCF for each of the energy futures in the sample using the 12 estimated term-premiums 

corresponding to the underlying energy futures in order to investigate systematic variations behind those 

term-premiums. The CHCF indicates the size of the corresponding energy market’s premium being paid 

to the investors in general regardless of the investment term. Table 3 illustrates the descriptive statistics 

of the CHCFs computed for the energy futures in our sample.  

 

<Insert Table 3 here > 

 

It is evident from Table 3 that the average term premium CHCFs for crude oil, natural gas, and gasoil 

contracts are negative and close to zero implying zero expected returns in the long-run for these futures 

with potential contango term structures. The percentage of positive term premium CHCFs for these 

commodities are also less than 50% implying a relatively higher possibility of contango effects than 

backwardation. In contrast, the term premium CHCFs of heating oil futures are more positive with close 

to zero returns in the long-run. Skewness and kurtosis values do not show significant deviations from 

symmetric behavior in term premium CHCFs. Although stationarity is evident from the ADF tests, 

serial correlations and heteroscedastic properties exist in all term premium CHCFs as reported by the 

LBQ and ARCH tests respectively. 

 

In order to examine the time-varying nature of the term premium CHCFs for the commodities, we plot 

the cumulative values of each CHCF in Figure 2.  From Figure 2 there is a cumulative negative, 

downward trend from year 2000 for all the commodities except heating oil. Continuous investment in 

crude oil, natural gas, and gasoil results in negative cumulative returns until around year 2010. The risk 

premiums of these three commodities dropped further as a result of the GFC. In contrast, heating oil 

futures demonstrate a cumulative positive and upward trend in risk-premiums until the GFC, followed 
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by a downward trend until 2011. All energy sector futures indicate positive trends after 2011 in varying 

magnitudes.  

<Insert Figure 2 here > 

 

Decreasing risk premiums in Figure 2 indicate the contango effect in those markets causing higher 

prices in short-term futures than long-term futures contracts. Booming commodity index investments 

and diversification of portfolios with commodity derivatives might be the possible causes for such 

behaviour in risk premiums. This phenomenon is well documented in Falkowski (2011) and Cheng and 

Xiong (2014) among others. They document that the large inflow of investment capital to the 

commodity futures markets in the past decade due to financialization of futures has distorted the 

commodity prices. Nikitopoulos, Squires, Thorp and Yeung (2017) find that OECD petroleum country 

shocks are transmitted through backwardated markets. During contango markets, US consumption 

shocks create a small initial price increase in the spot relative to the future market that is later reversed.  

 

4.2 Spillover of Information in Term Premiums  

Next, we consider if these energy futures share information related to their market risks among 

themselves. If information is shared we want to determine the form of the information spillover. It may 

be contemporaneous, delayed or potential? In this section, we answer these questions using the CHCFs 

computed in section 4.1. 

 

First, we investigate contemporary information spillovers using dynamic conditional correlations in 

Engle (2002) with ADCC (1,1,1) specification. Contemporary spillovers indicate how the information 

related to a market shock on one futures market in the current month affects another futures market in 

the same month. Figure 3 illustrates the computed conditional correlations between pairs of energy 

futures term-premium CHCFs. Figure 3 illustrates positive correlations between term premium CHCFs 

most of the time during the sample period. This indicates that the information related to market risks in 

one futures market is spilled over to the other futures market during the same month causing an increase 

in risk premiums across energy futures. This is true for all the pairs of energy futures examined in Figure 

3. However, the correlations between natural gas and the two commodities, heating oil and gasoil, 

appear to be negative in the early 90s indicating diversification opportunities of these futures in order 

to minimize investment risks. Moreover, the correlation between natural gas and crude oil indicate 

alternative signs over the sample period. When the market risk rises, the benefits of diversification 

appreciate and investors tend to choose commodities as refuge instruments (Chong and Miffre, 2010; 

Silvennoinen and Thorp, 2013). This potential demand for commodities from noncommercial traders 

has been increased in the past causing an increase in prices and hence, negative risk premiums. The 

increase in cross-commodity correlations in Figure 3 is also consistent with this conjecture that these 

fundamental demand factors are shaping not only oil prices, but other energy commodity prices as well.  

 

<Insert Figure 3 here > 

 

Second, we examine delayed information spillovers among these futures markets using their CHCFs. 

Delayed spillover indicates how the information related to the market shocks in one futures market 

during the past five months affects another futures market in the current month. We use Hong (2001) 

causality test for mean and variance spillovers, and Hong et. al. (2009) test for extreme risk spillovers. 

Hong (2001) interprets the volatility spillover as one large shock increases the volatility not only its 

own market but also other markets as well. Therefore, the causation (spillover) patterns in variance 

provide vital information for investors when hedging their investments against uncertainty. On the other 

hand, volatility is a two-sided risk measure and hence it cannot capture the spillover effects in the heavy 

tails due to jumps. Therefore, Hong et al. (2009) introduce a new concept of spillover called extreme 

risk spillover where the past history of the occurrences of extreme risks in one market has predictive 

ability for the occurrence of such risks in another market. This is known as Granger causality in value-

at-risk. Granger causality in risk considers on the co-movements between the left tails of the return 

distributions corresponding to two markets. This type of risk spillover can arise not only from co-
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movements in mean and in variance, but also from the co-movements in higher order moments such as 

skewness and kurtosis. Also, they may arise even in the absence of Granger causality in mean and 

variance. With respect to the four energy futures that we consider in this paper, the Granger causality 

tests in extreme downside (upside) risk reflect the impact of downside (upside) risks of very low (high) 

term-premiums in one energy sector commodity on the term-premiums of another energy sector 

commodity.  

 

<Insert Table 4 here > 

 

Table 4 summarizes the results corresponding to the one-way Granger causality in-mean, in-variance, 

and in-risk tests. It is interesting to observe from Panel A that none of the term- premium CHCFs 

transmit information on change in their mean term-premium levels during the past 5-month period to 

other markets. More specifically, causality-in-mean is not significant for any of the CHCFs. However, 

other panels of Table 4 indicate significant information spillovers due to changes in variance and 

extreme risks of their term-premiums. Panel B shows that variance in the gasoil term premium is 

significantly affected by the past variances in crude oil and natural gas term premiums. That is, small 

market shocks that change the variance of term-premiums of crude oil and natural gas markets 

significantly affect the variance of term-premiums of the gasoil market. Also, the information on change 

of variance in gasoil term-premiums is spilled over to the term-premiums in the crude oil sector 

indicating feedback causality-in-variance between crude oil and gasoil term premiums. Moreover, 

variance in heating oil term premium Granger causes to variance in natural gas term premiums.  

 

As far as downside risk spillovers in Panel C are concerned, crude oil plays a major role by transmitting 

information due to extreme decreases (extreme down-side shocks) in crude oil term-premiums on to 

both heating oil and gasoil term-premium down side risks. That is, an extreme drop in crude oil term-

premiums tends to Granger cause to decrease term premiums in both heating oil and gasoil extremely. 

Moreover, extreme downside risk in natural gas term- premiums Granger causes to crude oil term-

premiums and gasoil term-premiums Granger causes heating oil term-premiums. Panel D of Table 4 

indicates that term premium in gasoil is affected by extreme upside risks in all other energy commodities 

in the sample. In summary, gasoil becomes the mostly affected energy futures commodity due to 

variance-, downside-, and upside- risk spillovers from other energy sector commodity markets. Robe 

and Wallen (2016) empirically examine what drives market expectations of crude oil price volatility. 

These forecasts matter to physical market participants as economic agents seek to trade oil price 

volatility. Their study finds a positive association between the VIX and short-dated oil implied 

volatilities (IVs) and the West Texas Intermediate IV term structure.  

 

Finally, using the impulse response function developed by Pesaran and Shin (1998) we investigate how 

the potential impact of a shock to term premiums in one futures market  affects that market as well as 

the term-premiums in other futures markets. In Figure 4 we construct the impulse response plots from 

one futures market sector, with the corresponding 90% simulated confidence intervals, using a VAR(2) 

specification.42 It is evident from the graphs in Figure 4 that a shock on the term-premiums of any 

energy futures market has a potential impact on the term-premiums of all other futures markets, with 

shocks being absorbed over a period of up to two months. The result indicates that investors’ fear of 

shocks to their investment premiums lasts approximately two months on average in any energy futures 

market.   

<Insert Figure 4 here > 

 

In a related study, Robe and Wallen (2016) show that shocks to physical oil market fundamentals are 

important. Their study documents a relation between oil IVs, output constraints and storage market 

tightness.   

 

                                                           
42 We limit the model for VAR(2) (i.e., 𝑝 = 2) as the inclusion of further lags does not make a significant contribution over 

the loss of degrees of freedom.  
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5. Conclusion 
 

This study introduces a novel futures market efficiency index which is based on the aggregate efficiency 

of the futures along its term structure spanning from 1 month to 12 months. The index uses a market 

efficiency test recently developed in Kuruppuarachchi et al. (2017) that accounts for both 

heteroscedastic prices and time-varying risk premiums. The efficiency test simultaneously estimates the 

time-varying term-premiums of futures providing valuable information to the investor. The index 

assesses the efficiencies of four major energy futures commodities, namely WTI crude oil, heating oil, 

natural gas, and gasoil. The contracts of these commodities are available each month during sample 

period 1990 to 2016. Our findings are interesting and very appealing to the investor. We document that 

futures market efficiency is not consistent across different terms to maturity for all the energy 

commodities considered in this paper, except gasoil. Moreover, the estimated term premiums between 

successive contracts of the same commodity reveal important information on the market dynamics of 

energy futures due to backwardation and contango. We propose for the first time in the literature a 

conditionally heteroscedastic common factor (CHCF) for each energy sector commodity considered in 

this paper. The CHCFs represent the common systematic variations of the term-premiums of all the 

contracts of a given commodity. We use the CHCFs to investigate the information spillovers between 

term-premiums of energy sector commodities. Results reveal that spillovers do exist in three different 

forms namely, contemporaneous, delayed, and potential impact. 
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Table 1: Summary statistics of the sample of futures 

This table presents descriptive statistics of energy futures contracts selected in this study during 

January 1990 to December 2016. Summary measures are presented for each term from 2 months 

to 12 months to the maturity. First row presents summary statistics for the prices at the maturity 

day. 

Term 

WTI Crude Oil 

($ per barrel) 

Heating Oil 

($per gallon) 

Natural Gas 

($per MMBtu) 

Gasoil  

(per metric tonne) 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Maturity 46.55 30.56 135.18 93.12 3.81 2.37 388.90 315.32 

1 month 46.78 30.71 135.62 93.45 3.91 2.43 388.51 314.60 

2 months 46.90 30.85 135.97 93.82 3.97 2.47 389.19 314.94 

3 months 46.94 30.96 136.18 94.15 4.00 2.47 389.79 315.33 

4 months 46.96 31.05 136.32 94.44 4.03 2.49 390.45 315.82 

5 months 46.94 31.12 136.39 94.66 4.05 2.50 391.03 316.31 

6 months 46.91 31.16 136.42 94.81 4.07 2.51 391.55 316.76 

7 months 46.87 31.18 136.42 94.90 4.08 2.51 391.87 317.03 

8 months 46.82 31.20 136.40 94.92 4.10 2.51 392.09 317.24 

9 months 46.77 31.20 136.34 94.88 4.10 2.49 392.25 317.40 

10 months 46.72 31.20 136.29 94.84 4.10 2.47 392.37 317.48 

11 months 46.68 31.19 136.24 94.82 4.10 2.46 392.50 317.55 

12 months 46.79 31.11 136.58 94.52 4.11 2.46 393.74 316.93 
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Table 2: Numerical Results 
This table summarizes the results of the market efficiency of four energy futures in the sample. *, ** , and *** indicate the significance of the stationarity at 10%, 5% and  

1%, respectively. Each panel illustrates corresponding results for WTI crude oil, heating oil, natural gas, and gasoil futures. Computed efficiency index is illustrated at the 

end of each panel. 

Panel A: Computation of 𝑬𝒊 for WTI Crude Oil (𝑬𝑰𝑪𝑳) 

Term 

𝑁 

Stationarity test of 

𝜀(𝑡)    
Step-(i)     

Test of  

 H0:  𝛽1 = 1   

Step-(ii)     𝐼(𝑁) 𝑊(𝑁) �̂�1 𝛾0 𝛾1 

Average 𝜋𝑎𝑛
𝑁 (𝑡 +

1) 
(annualized %) 

Stdev 

 𝜋𝑎𝑛
𝑁 (𝑡 + 1) 

(annualized %) 

1 -8.187*** 0.195 1 0.997   0.9996 -0.000028***   0.90000 -0.0972 0.4925 

2 -5.834*** 0.467 1 0.974   1.0000 -0.00006   0.84690 -0.0932 0.2766 

3 -5.223*** 25.441 0 0.930   0.9997*** -0.000098***   0.8765*** -0.0083 0.2736 

4 -4.697*** 0.175 1 0.866   1.0000 -0.000048***   0.89950 -0.0345 0.1247 

5 -4.578*** 27.255 0 0.784   0.9999*** -0.000014***   0.8044*** 0.0167 0.1585 

6 -4.305*** 0.439 1 0.689   0.9998 -0.000034***   0.70340 0.0176 0.1180 

7 -4.201*** 0.190 1 0.583   1.0004 -0.00003   0.54850 -0.0074 0.0588 

8 -4.357*** 76.859 0 0.471   1.0002*** -0.000023***   0.8974*** 0.0040 0.0914 

9 -4.401*** 0.092 1 0.357   1.0005 -0.00002   0.79770 -0.0072 0.0651 

10 -4.409*** 0.962 1 0.245   1.0005 -0.000006***   0.89990 -0.0054 0.0626 

11 -3.992*** 0.756 1 0.139   1.0004 -0.00001   0.01090 -0.0008 0.0059 

12 -17.715*** 0.879 1 0.043   0.9999  0.00000   0.16780 -0.0014 0.1526 

𝑪𝑬𝑰𝑪𝑳 = 𝟎. 𝟔𝟗𝟏𝟑         

Panel B: Computation of 𝑬𝒊 for Heating Oil (𝑬𝑰𝑯𝑶) 

Term 

𝑁 

Stationarity test of 

𝜀(𝑡)    
Step-(i)     

Test of  

 H0:  𝛽1 = 1   

Step-(ii)     𝐼(𝑁) 𝑊(𝑁) �̂�1 𝛾0 𝛾1 

Average 𝜋𝑎𝑛
𝑁 (𝑡 + 1) 

(annualized %) 

Stdev 

 𝜋𝑎𝑛
𝑁 (𝑡 + 1) 

(annualized %) 

1 -7.351*** 20.591 0 0.997 0.9988***  0.00000 0.16780 -0.0014 0.1526 

2 -6.515*** 0.345 1 0.974 0.9993 -0.000006*** 0.89490 -0.0198 0.3215 

3 -6.250*** 0.472 1 0.930 0.9997 -0.00003 0.84230 -0.0277 0.3271 

4 -6.217*** 0.706 1 0.866 0.9995 -0.00002 0.84540 -0.0667 0.2369 

5 -6.461*** 0.343 1 0.784 0.9994 -0.00001 0.74250 -0.0447 0.1841 

6 -6.500*** 0.064 1 0.689 0.9994  0.000011*** 0.82190 0.0181 0.2069 

7 -6.615*** 0.460 1 0.583 0.9996  0.000012*** 0.83980 0.0507 0.1954 

8 -6.635*** 0.641 1 0.471 1.0000  0.000016*** 0.89330 0.0188 0.1845 

9 -6.775*** 0.433 1 0.357 1.0001  0.00001 0.75220 -0.0343 0.1049 

10 -6.740*** 0.751 1 0.245 1.0001  0.00001 0.49960 -0.0057 0.0823 

11 -6.920*** 0.375 1 0.139 0.9996 -0.000003*** 0.80680 -0.0120 0.0919 

12 -17.463*** 0.152 1 0.043 1.0002 -0.000025*** 0.74140 -0.0143 0.0680 
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𝑪𝑬𝑰𝑯𝑶 = 𝟎. 𝟖𝟓𝟗𝟏         

Panel C: Computation of 𝑬𝒊 for Natural Gas (𝑬𝑰𝑵𝑮) 

Term 

𝑁 

Stationarity test of 

𝜀(𝑡)    

Step-(i)     

Test of  

 H0:  𝛽1 =
1   

Step-(ii)     𝐼(𝑁) 𝑊(𝑁) �̂�1 𝛾0 𝛾1 

Average 𝜋𝑎𝑛
𝑁 (𝑡 +

1) 

(annualized %) 

Stdev 

 𝜋𝑎𝑛
𝑁 (𝑡 + 1) 

(annualized %) 

1 -8.994*** 0.878 1 0.997   0.9820    0.000038***  0.80130         0.2817      1.1208 

2 -8.675*** 25.549 0 0.974   0.9913***    0.000029**    0.6753*** -0.0263 0.8099 

3 -9.312*** 28.390 0 0.930   0.9884***    0.00004    0.59940   0.1596 0.5781 

4 -8.078*** 6.812 0 0.866   0.9928***    0.00004    0.81870   0.1137 0.5591 

5 -8.665*** 19.804 0 0.784   0.9943***   -0.000021***    0.8635***   0.0656 0.4183 

6 -8.865*** 19.821 0 0.689   0.9948***   -0.000001**    0.6697***   0.0452 0.2851 

7 -8.980*** 0.284 1 0.583   0.9994    0.00000    0.85530 -0.0492 0.2985 

8 -8.737*** 0.063 1 0.471   0.9977    0.00003    0.67030   0.0019 0.2673 

9 -9.520*** 0.949 1 0.357   0.9995    0.00000    0.61320 -0.0288 0.2439 

10 -9.331*** 0.845 1 0.245   0.9993   -0.00001    0.70780 -0.0086 0.2152 

11 -9.408*** 0.940 1 0.139   0.9996   -0.00005    0.72330 -0.0124 0.2149 

12 -15.289*** 0.547 1 0.043   0.9997    0.00005    0.58710   0.0133 0.3213 

𝑪𝑬𝑰𝑵𝑮 = 𝟎. 𝟒𝟎𝟎𝟓   
 

     

Panel D: Computation of 𝑬𝒊 for ICE Gasoil (𝑬𝑰𝑸𝑺) 

Term 

𝑁 

Stationarity test of 

𝜀(𝑡)    

Step-(i)     

Test of  

 H0:  𝛽1 =
1   

Step-(ii)     𝐼(𝑁) 𝑊(𝑁) �̂�1 𝛾0 𝛾1 

Average 𝜋𝑎𝑛
𝑁 (𝑡 +

1) 

(annualized %) 

Stdev 

 𝜋𝑎𝑛
𝑁 (𝑡 + 1) 

(annualized %) 

1 -11.686*** 0.172 1 0.997 0.9999 -0.00002  0.64140 -0.0293 0.3372 

2 -6.414*** 0.864 1 0.974 0.9995 -0.00001  0.72460 -0.0182 0.2706 

3 -5.501*** 0.771 1 0.930 0.9995 -0.00001  0.89980 -0.0051 0.2683 

4 -5.379*** 0.292 1 0.866 0.9995   0.00000  0.89440 0.0039 0.2489 

5 -5.459*** 0.030 1 0.784 0.9998   0.00002  0.89270 -0.0061 0.2010 

6 -5.560*** 0.349 1 0.689 0.9996   0.00002  0.89930 0.0190 0.1784 
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7 -5.555*** 0.714 1 0.583 0.9997    0.00001  0.83550 0.0220 0.1102 

8 -5.869*** 0.618 1 0.471 0.9999 -0.000001**  0.89910 0.0051 0.1177 

9 -6.105*** 0.947 1 0.357 0.9999 -0.000014***  0.8881*** 0.0129 0.1143 

10 -6.834*** 0.002 1 0.245 0.9999 -0.000030***  0.85760 0.0062 0.0886 

11 -7.102*** 0.007 1 0.139 0.9999 -0.00010  0.89740 -0.0074 0.0849 

12 -16.409*** 0.956 1 0.043 0.9998   0.00000 -0.22880 -0.0115 0.2052 

𝑪𝑬𝑰𝑸𝑺 = 𝟏. 𝟎𝟎𝟎𝟎   
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Table 3: Summary of Term Premium CHCFs 

This table presents a summary of descriptive statistics of term premium CHCFs of four 

energy commodities for the sample period of January 1990 to December 2016. % 

Positive corresponds to the percentage of positive term premium CHCF values during 

the sample period  ADF (Augmented Dickey-Fuller), LBQ (Ljung-Box), and ARCH 

(Engle’s ARCH) tests are performed to test for stationarity (H0: unit root process), 

autocorrelations, and heteroscedasticity in CHCFs respectively. The H0 of the ADF is 

the unit root hypothesis. The H0 of the LBQ test is the existence of a serially 

unautocorrelated series. The H0 of the ARCH test is the homoscedasticity of the 

underlying series. All tests are performed at 5 lags and *, ** and *** denote significance 

at the 10%, 5% and 1% levels, respectively. 

 

WTI Crude 

Oil 

Heating Oil Natural Gas Gasoil  

Mean -0.0334 0.0119 -0.0410 -0.0849 

Stdev 0.4210 0.4829 0.8593 0.4915 

% Positive  46.21% 51.62% 48.01% 42.24% 

Skewness 0.1428 -0.0437 0.0393 0.2702 

Kurtosis 1.5623 1.5597 2.0881 1.5177 

Sample Size 277 277 277 277 

ADF Test  -5.8510***  -6.9350***  -6.2779***  -5.7345*** 

LBQ Test 101.1326***  53.8044***  35.4376***  32.9477*** 

ARCH Test 156.7196*** 136.8848***  78.3172***  93.8656*** 
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Table 4. Results of Granger Causality Tests 

This table presents the results of the Granger causality tests using the causality in mean and variance 

tests  due to  Hong (2001), and causality in risk tests due to Hong et al. (2009) for the term premium 

CHCFs. Daniel kernel with 5 months lag is used in all Hong’s tests of causality.   *, ** and *** denote 

significance at the 10%, 5% and 1% levels, respectively. 

Causality to Causality from 

Panel A: Causality-

in-Mean WTI Crude Oil Heating Oil Natural Gas Gasoil 

WTI Crude Oil   0.0505 0.2431   0.9745 

Heating Oil -0.8582  -0.214   1.1946 

Natural Gas -0.6112 -0.3071  -0.4343 

Gasoil  -0.2926  0.5444 0.7839  
 Panel B: Causality-in-Variance    

WTI Crude Oil  -0.5329 -0.5745   3.3139*** 

Heating Oil -0.5664  -0.8088   0.9452 

Natural Gas -0.5473  2.0295**  -0.3959 

Gasoil   4.6829*** -1.0247   4.0972***  

Panel C: Causality-in-Downside Risk    

WTI Crude Oil  -0.6239  4.1087*** -0.0231 

Heating Oil   4.8828*** -0.3315 -0.4195   4.8828*** 

Natural Gas -0.9843 -0.7458    0.2092 

Gasoil    5.5265***  0.5420 1.1176  

Panel D: Causality-in-Upside Risk    

WTI Crude Oil  -0.5731 -0.4800 -0.2643 

Heating Oil -0.1569  -0.3992   0.3523 

Natural Gas -0.2301  1.1177    0.7504 

Gasoil   2.3345***  1.6131*  2.9447***  
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Figure 1. Futures Term Premium 
The two panels in this figure display the annualized mean and annualized standard deviation of the futures term period estimated by equation (2) for the for 

energy sector commodity futures namely, WTI futures, heating oil, natural gas, and gasoil. The values are reported for contracts with maturities ranging from 

12 months to one month.  
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Figure 2. Cumulative Term Premium CHCFs 

The four panels in this figure display the cumulative performance of term premium CHCFs during the sample period for the four energy sector commodity 

futures namely, WTI futures, heating oil, natural gas, and gasoil. A term premium CHCF demonstrates the systematic variation of term premiums covering a 

term structure from 2 months to 12 months until maturity. Shaded area represents the GFC during 2007/12/01 to 2009/6/30. 
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Figure 3. Conditional Correlation Analysis 

This figure illustrates the conditional correlations between term premium CHCFs corresponding to each energy commodity in the sample. The conditional 

correlations are estimated using the ADCC (1,1,1). Shaded area represents the GFC during 2007/12/01 to 2009/6/30. 
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Figure 4. Impulse Response Analysis 

This figure illustrates the generalized impulse response functions for each term premium CHCF. Dotted lines represent 90% simulated confidence bands. 
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ABSTRACT 

 

In this paper, we design a new hypothesis that for energy firms’ oil market activities impact 

capital structure. We test this hypothesis using an extensive and unique sample of 726 energy 

firms from 56 countries covering the 1986 to 2015 period. We find that oil market activities do 

influence capital structure. Specifically, we discover that speed of adjustment (SOA) to 

leverage for energy firms when not exposed to oil market activities is between 0.54 and 1.69 

years. When exposed to oil price growth (market liquidity) the corresponding SOA is between 

1.03 and 2.15 (0.48 and 1.32) years. In other words, oil price growth slows down while market 

liquidity improves SOA to leverage for energy firms.  

 

Keywords: Capital Structure; Energy Firms; Leverage, Speed of Adjustment; Oil Prices. 
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I. Introduction 

 

The speed of adjustment (SOA) to a target leverage occupies significant interest in corporate 

finance research. The reason is strong. The motivation for estimating SOA has roots in the 

works of, among others, Fama and French (2002), Flannery and Rangan (2006), and Shyam-

Sunder and Myers (1999). The key motivating message of these studies is that a slow SOA is 

tantamount to inconsequential target leverage. In other words, when firms adjust to a target 

leverage slowly the implication is that the trade-off theory, which argues that to embrace a 

change in leverage firms have to consider the marginal benefit and cost of such a change, has 

little relevance to capital structure. The relevance of trade-off theory has been, as a result, a 

subject of tension mounted with mixed empirical results; see Graham and Leary (2011) and 

Welch (2004). 

 

Our goal in this paper is to revisit the issue of the relevance of capital structure trade-off theory. 

With respect to the vast literature on trade-off theory, our position is novel and different in the 

following way. Motivated by the fact that asymmetric information and other costs, such as 

transactions costs and taxes, contribute to market imperfections and these imperfections impact 

a firm’s leverage rebalancing decisions, we ask what precisely the role of oil market activities 

is. Oil market activities are an important consideration because they create market 

imperfections (see Section II for a detailed discussion on this). For energy firms, oil prices and 

related measures, such as price basis and price return volatility, constitute key sources of 

information asymmetry. The existence of hedgers and speculators in oil spot and futures 

trading, for instance, is a source of information asymmetry. It follows that oil market prices, 

their volatility, and price basis can potentially signal information asymmetry. On the other 

hand, trading volume and open interest in the oil market can, by improving liquidity, potentially 

reduce information asymmetry. The fact that the role of oil market activities in shaping a firm’s 

capital structure has not been studied represents a research gap worthy of investigation. Doing 

so will allow us to understand capital structure from a different (oil market) point of view. Our 

paper, therefore, is a response to this research gap. Precisely for this reason, we consider only 

energy firms because they are the most directly impacted by oil prices (see Narayan and Sharma 

2011). We collect a sample of energy firms that belongs to 56 countries. We have annual data 

over the 1986 to 2015 period for 726 firms, totaling no less than 8,641 firm-year observations. 

The sample is unique because it represents the first study on capital structure of energy firms 

and rich because it considers data from 56 countries. We, therefore, have a global sample. 

 

Our empirical approach is motivated by the evidence that estimated SOA can be estimator 

dependent. The implication is that the estimation of SOA and its robustness go together. We 

are not ignorant about it, and respond by applying multiple estimators, namely, the panel fixed 

effects (FE) estimator, the Arellano and Bond (1991) difference generalized method of 

moments (GMM) estimator, the least squares dummy variable correction (LSDVC) estimator 

of Bruno (2005) and Kiviet (1995), the long difference (LD) estimator of Hahn, Hausman, and 

Kuersteiner (2007), and the iterative bootstrap-based correction (BC) procedure proposed by 

Everaert and Pozzi (2007). 

 

Our main story revolves around using oil market activities to test the hypothesis that they matter 

to leverage and the speed at which leverage reverts to equilibrium. Together, broadly, we 

consider eight measures, namely, oil spot/futures price growth, their volatility, basis, volume 

of trade, liquidity (open interest), and the US$100 oil price psychological barrier, to represent 

oil market activities. We proxy oil prices with the annual growth rate in oil prices. As an 

alternative measure of the effect of oil prices, we consider the psychological barrier effect—
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that is, the effect on leverage when oil price reached the US$100 per barrel mark for the first 

time in history. We capture this using a dummy variable following Narayan and Narayan 

(2014), who show that when the oil price reached US$100 or more per barrel it negatively 

affected US stock returns. Oil price futures, its trading volume, open interest (liquidity), and 

price basis are used as additional variables that proxy oil market activities.  

 

Our investigation concludes with three key findings. Our first finding is that oil prices do matter 

to corporate leverage decision making. For example, in trade-off theory-based regression 

models, both oil spot prices and the dummy variable capturing the US$100 per barrel 

psychological barrier effect appear statistically significantly, suggesting that they determine 

leverage. Apart from their statistical significance, we also estimate whether they are 

economically significant. We find that they are economically relevant as well. Specifically, we 

find that the effect of the growth rate in oil price reduces leverage by around 10% of mean 

leverage (where mean leverage is around 17% of total assets). We also discover that both the 

growth rate of oil price and the perceived psychological barrier influence also SOA. The SOA 

without oil effects, depending on the estimator used, falls in the 0.54 years to 1.69 years range. 

With the oil price growth rate, SOA increases to between 1 year and 2.15 years range. With the 

psychological barrier effect, SOA is in the 0.94 years to 1.85 years. The message is that, on 

average, these estimates are sufficiently high compared to estimates obtained without the two 

oil price variables. 

 

Our second finding is that there is limited evidence from our regression analysis that trading 

volume and price basis matter to leverage and SOA. They appear economically irrelevant as 

well. The other price variables, namely oil futures price and its volatility, do matter to leverage 

but not so much to SOA. A one standard deviation increase in oil futures price and its volatility, 

for instance, influence leverage by at most 10.8% and 5.3%, respectively. Our third most 

important result relates to the effect of liquidity. We find that a one standard deviation increase 

in liquidity has the most (magnitude-wise) effect on leverage. It reduces leverage by 13% of 

mean leverage and improves SOA from about 1.7 years to 1.3 years.  

  

These results are robustness along multiple counts. First, we show that the results hold 

regardless of the measure of leverage—both market debt ratio and book debt ratio provide 

consistent results. Second, we document that there is a size effect story in our hypotheses test. 

The effect both on leverage and on SOA is mainly on the large sized firms; however, the role 

of oil price growth, psychological barrier and liquidity stand out in a robust manner. Third, we 

test for nonlinear effects and find that the SOA is insensitive to positive and negative changes 

in oil prices although economically negative oil price changes reduce leverage more than 

positive oil price changes. 

 

Our empirical investigation contributes to two literatures. First, we connect to the literature that 

directly studies SOA. There is a vast literature documenting the magnitude of SOA but without 

consensus (e.g., Alti, 2006; Fama and French, 2002; Flannery and Rangan, 2006; Leary and 

Roberts, 2005; Lemmon, Roberts, and Zender, 2008; in contrast with Elsas and Florysiak, 

2015; Frank and Goyal, 2008; Graham and Leary; 2011; Huang and Ritter, 2009). This 

literature finds the SOA to be in the 7–36% range. Several of these studies question the validity 

of trade-off theory as a result. Fama and French (2002) and Graham and Leary (2011), among 

others, question the relevance of a target leverage upon finding slow SOAs to leverage. In our 

story, such concerns are eased, with our results supporting faster SOAs across a broad range of 

estimators. Even when allowing for asymmetric effects arising from oil prices, SOA suggests 

a much faster half-life (1 year to 2.15 years) compared to the non-energy firm leverage SOA 
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literature. In fact, when we study the effect of oil market liquidity, we discover an even faster 

SOA (half-live of between 0.48 years and 1.32 years). 

 

The second literature we contribute to is on the broader role of oil prices in understanding the 

economic and financial systems. Studies have shown that oil prices predict economic growth 

(Hamilton, 1983; Rotemberg and Woodford, 1996) and stock prices (Driesprong, Jacobsen, 

Maat, 2008; Kilian and Park, 2009). Our study is the first to develop the relation between oil 

and corporate debt, and show how oil prices and other oil market variables impact corporate 

leverage. Overall, therefore, our study identifies a role for oil market activities that go beyond 

merely understanding their relevance to shaping economic growth and stock prices. 

 

The remainder of the paper proceeds as follows. Section II contains hypothesis development, 

focusing specifically on how oil market activities, by creating asymmetric information, 

contribute to capital structure decision making. Section III presents the data and discusses 

results. Section IV discusses the results from robustness tests. The final section provides 

concluding remarks. 

 

II. Hypothesis development 

A well-established fact of capital structure theories relates is the role played by information 

asymmetry is determining optimal leverage. This role can be traced to the relation between 

information asymmetry and external financing costs. As Myers (1984) and Myers and Majluf 

(1984) make clear, firms’ external financing costs rise with information asymmetry. The 

implication is clear: Information asymmetry dictates the composition of debt and equity 

issuance for a firm (Noe, 1988; Ross, 1977), which in turn dictates how the stock market reacts, 

an idea consistent with the signaling theory of capital structure. 

 

The key point of our hypothesis is that oil market activities matter to corporate capital structure 

of energy firms. The speed at which energy firms adjust their leverage depends on the evolution 

of the oil price—both its first and second order moments, volume of oil contracts traded, 

liquidity in the oil market and the price basis. There are several channels through which the oil 

market related activities introduce information asymmetry and transaction costs to energy 

firms. The starting point is to recognize that there are two types of traders in the oil market—

hedgers and speculators. A key characteristic of speculators is that they possess different 

information on selected variables. To avoid strategic participation in the spot market, Perrakis 

and Khoury (1998) assume that speculators only participate in the futures market while 

speculators and hedgers both are active in the spot market. Hedgers are generally less well 

informed but possess private information (Johnson, 1960) but they do not possess private 

information sufficient to impact futures market equilibrium (Perrakis and Khoury, 1998). 

Speculators thrive on information extracted from the informational asymmetry and randomness 

of the spot market supplies (see Grossman, 1978 and Bray, 1981). The key message of this 

discussion is that because hedgers and speculators take positions in both spot and futures 

markets and each possesses different degree of information, a source of information asymmetry 

in the oil market is hedgers and speculators themselves. 

 

A second channel of information asymmetry is informational frictions in commodity markets, 

a subject that is illustrated neatly in Sockin and Xiong (2015). The key message of this paper 

is that commodity market participants are exposed to severe informational frictions regarding 

global supply, demand and inventory of these commodities. They attribute this to the greater 

global importance (hence globalization) of crude oil. The theoretical model of Scokin and 
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Xiong (2015) has several unique features, from which we can infer and generalize that: (1) a 

higher oil price depicts a stronger global economy, enticing producers to increase oil 

production; (2) an oil supply shock constitutes informational noise, thereby oil price does not 

fully reveal the strength of the global economy; and (3) because the futures market attracts 

different participants than the spot market, it may have its own informational effects on 

commodity demand and the spot price. 

 

There is empirical support for point (3) also. There is, for instance, disagreement about future 

oil prices by professional market participants. As shown in Singleton (2011), the time-series 

dispersion in the standard deviation of the one-year ahead forecasts of oil prices by the 

professionals surveyed by Consensus Economics and the level of WTI oil prices has widened. 

This reflects information asymmetry in the oil market. Finally, energy price bubbles also 

contribute to asymmetric information. Narayan and Narayan (2017) show that the oil market 

is characterized by price bubbles. Their findings reveal that bubbles are responsible for optimal 

energy pricing.  This result has connections to the idea that one key source of asymmetric 

information is bubbles, as, for example, demonstrated in the work of Abreu and Brunnermeier 

(AB, 2003) and Asako and Ueda (2014). The AB model rests on the idea that when investors 

receive a private signal (asymmetric information) they have an incentive to ride a bubble 

compared to when they receive a public signal (symmetric information). These discussions 

motivate the following hypothesis. 

 

Hypothesis 1: Increased information asymmetry and transaction costs lead to a slower SOA. 

In contrast to the discussions relating to the design of hypothesis 1, oil market liquidity can 

obviate information asymmetry and transaction costs. Futures market open interest—our 

measure of oil market liquidity—reveals the number of outstanding contracts that are active. A 

high number of open interest implies higher volume of market participants, which reduces 

information asymmetry and transaction costs. From the work of Easley et al. (1996), we learn 

that higher trading volume is associated with probability of information event, higher intensity 

of informed and uniformed trading. They point out that higher liquidity tends to attract more 

uninformed traders compared to informed traders. In other words, while higher volume sees 

both informed and uninformed trading increase, liquidity has a larger effect on uninformed 

trading, thus it is easy to follow how liquidity reduces information asymmetry.  Moreover, from 

the work of Edmans (2009), it is clear that increasing market liquidity can lower transaction 

costs. This leads to our second hypothesis. 

 

Hypothesis 2: Increased liquidity by reducing information asymmetry and transaction costs 

lead to a faster SOA. 

 

III. Data and main results 

 

A. Data 

 

We use two types of data to test our proposed hypotheses. First is the corporate leverage related 

data for energy firms. A list of all variables used are noted in column 2 of Table I. Market debt 

(MDR) and book debt (BDR) ratios are used as dependent variables. A range of control 

variables, such as profitability (EBIT_TA), depreciation (DEP_TA), total assets (SIZE), fixed 

asset proportion (FA_TA), and research and development variables (R&D_TA) are used. Full 

details are provided in Table I. These data are downloaded from the Compustat database. The 

second data series is with respect to crude oil; we use the Brent crude oil price as a proxy for 

the spot market and use it to identify the dates on which the oil price reached the US$100 per 
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barrel mark. Using these dates, we form a dummy variable to capture the oil price psychological 

barrier effect. This data are from the US Energy Information Administration website. We 

obtain the oil price futures, contracts traded (volume) and open interest data from the 

Commodity Research Bureau database. Finally, we use a GARCH (1,1) model to estimate oil 

price spot and futures price return volatility. 

 

The specific steps involved in data construction are noted in Table II. These can be summarized 

as follows. We begin by considering energy firms from the Compustat database. We 

specifically consider SIC codes 1311 (crude petroleum & natural gas), 1381 (drilling oil and 

gas wells), 1382 (oil & gas field exploration services), and 1389 (oil & gas field services). We 

consider a period 1986 to 2015 because it allowed us to maximise the number of countries for 

which we could obtain data. This period contains data for 56 countries and has 726 firms for a 

total of 8,641 firm-year observations.  We remove firms with at least two years of missing data 

and we winsorize data at the 1% and 99% levels to remove outliers. This financial data are 

supplemented with the securities price data for the corresponding firms, as listed in Table I. 

 

[Insert Table I and II here] 

 

Table I presents descriptive statistics of the data. Our main interest variables are MDR and 

BDR. The literature uses both measures of leverage as a dependent variable, although in testing 

the trade-off theory MDR is the preferred dependent variable. The difference between the two 

is that MDR is forward looking (accounts instantaneously for all information available through 

the financial market), whereas BDR is a historical accounting-based measure, implying that 

firm management may have an influence on the reported figures. By definition, therefore, MDR 

is expected to be more volatile than BDR. This is what we find as reported in Table III. The 

standard deviation of MDR is at most 0.242 while that of BDR is 0.215 for the sample of entire 

756 firms. 

 

Appendix A contains a plot of the seven time-series oil market activity variables and a table of 

descriptive statistics. These provide a snapshot of the data series with respect to the oil market 

activity. Some key features of the data are as follows. Annual average growth rates in trading 

volume and open interest have been highest at 18.7% and 16.8%, respectively. This is followed 

by spot price growth (6.3%) and futures price growth (4.7%). These four series with the highest 

growth are also amongst the most volatile. In terms of persistence, the ADF unit root test, which 

examines the null hypothesis of a unit root, is reported in the last column. The t-statistic 

reported in parenthesis suggests that the unit root null hypothesis can be rejected at the 5% 

level of better for all seven series. It is therefore clear that all series are stationary. We also 

observe that, based on the AR(1) coefficient, there is some level of persistence in series such 

as basis, open interest and volume growth but they are all less than 0.42. The implication is that 

these series are statistically suitable for our regression analysis. 

 

B. Empirical design 

The empirical specification for a partial SOA to leverage (MDR) widely used in the literature 

(e.g., Flannery and Rangan, 2006) has the following form:                              

         

               𝑀𝐷𝑅𝑖𝑡+1 = (1 − 𝛾)𝑀𝐷𝑅𝑖𝑡 + 𝛾𝛽𝑋𝑖𝑡 + 𝛾𝛼𝑖 + 𝜀𝑖𝑡+1                                   (1) 

 

where 𝛾 is the SOA coefficient and MDR (or BDR in models for robustness/additional tests) 

proxies leverage. See Table II for descriptions and details of the variables. A range of 

theoretically motivated variables that help explain MDR is represented by 𝑿 (see Table I). 
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These variables are common in this literature and therefore we refrain from repeating a 

discussion on them. A final note concerns the time it takes to achieve target leverage: From the 

estimates of the SOA, we compute the implied half-life as [log(0.5)/log(1 - 𝛾)], which is the 

number of years it takes to revert to half of the target level. The regression model is estimated 

using five estimators, namely, the FE, LSDVC, BC, LD, and GMM. The idea behind reporting 

results from multiple estimators is to judge the robustness of the results from the estimator 

point of view. We will however use the difference GMM estimator as our preferred estimator 

for making general inference since it is the most widely used estimator.  

 

C. Results 

 

C1. Oil spot and futures price effects 

We begin with the results reported in Table III without oil market activity variables. We 

consider this regression as our baseline model, allowing us to compare SOA when oil market 

activity variables are included (Table IV). Across the five estimators, the coefficient on the 

one-period-lagged MDR falls in the 0.275 (t-statistic = 5.22) to 0.664 (t-statistic = 6.04) range. 

This result suggests a SOA of 33.6–72.5%. With our preferred estimator, GMM, the SOA is 

72.5%, which translates to a half-life of 0.54 years. Across all other estimators the half-life is 

in the 0.94–1.69 years. These results imply a fast rate of adjustment to leverage consistent with 

the trade-off theory. 

[Insert Table III and IV here] 

 

We now examine results from the regression model where we include the growth rate in oil 

spot price (Table IV). We see that the SOA is slightly slower now in the range of 27.6 - 43.1%, 

with a half-live of between 1.08 years to 2.15 years. When we include an oil price dummy 

variable capturing the psychological effect of price reaching the US$100 per barrel mark (Table 

V), we again observe half-lives higher (in the 0.94 years to 1.85 years range) than when oil 

effects are excluded. These results are consistent with Hypothesis 1. They imply that oil prices 

by introducing information asymmetry delay SOA to leverage for energy firms. 

 

[Insert Table V and VI here] 

 

Oil price futures effect on SOA is reported in Panel B of Table VI. We see that across all 

estimators the slope coefficient on oil price futures growth rate is statistically different from 

zero. The t-statistic (in absolute terms) is in the 2.30 and 4.43 range. The effect is negative 

suggesting that like spot oil price growth the futures price growth reduces debt. However, we 

do not observe any remarkable difference in SOA. The half-lives are within the 0.81 to 1.53 

years range. Finally, we consider basis, which is the difference between spot and futures oil 

price. The results are reported in Panel C (Table VI). Across all five models, basis is statistically 

insignificant. The t-statistic is in the 0.28 to 1.29 range. 

 

C2. Oil price volatility effects 

Oil price spot and futures volatility also represents asymmetry in the oil market. This sub-

section is devoted to understanding precisely the role of price volatilities in influencing SOA. 

The results are reported in Panel D (spot price return volatility) and Panel E (futures price 

return volatility). Prices volatilities are bad for debt; they increase debt. All estimators suggest 

that a rise in price volatilities increases debt by between 0.048% and 0.056% (spot price 

volatility) and by between 0.046% and 0.057% (futures price volatility). The SOA though 

remains very close to those observed from the baseline model, particularly at the lower end of 

the range of estimated half-live. For example, we see half-live in the 0.49 years to 1.34 years 
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range with price return volatilities compared to the half-live obtained from the baseline model, 

which is in the 0.54 to 1.69 years range. It follows that like oil price futures, while price 

volatilities are statistically significant determinants of leverage their effect on SOA is limited.  

 

C3. Volume and futures contracts 

We also consider other measures of oil market activity, namely, the volume of oil traded and 

the open interest. The use of volume and open interest constitute oil market activity because it 

reflects the number of futures contracts traded while open interest is a measure of liquidity in 

oil futures market because it represents the number of outstanding futures contracts held by 

market participants. In other words, as volume of open interest increases, so do market activity 

and therefore liquidity. As Dolatabadi, Narayan, Nielsen and Xu (2017) note, out of all 

commodities the volume of contracts and outstanding futures contracts are the largest for crude 

oil. Crude oil makes up appropriately 1/3 of all commodity contracts. The results of the effect 

of volume and open interest are reported in Panels F and G of Table VI. We find that the slope 

coefficient of volume growth is statistically insignificant; the estimated t-statistic is in the 0.35 

to 0.54 range in absolute terms.  

 

The growth rate of open interest, on the other hand, is statistically different from zero in 4/5 

estimators. The sign suggests that as liquidity improves it reduces debt, which is just as 

expected. Liquidity, we find, improves SOA. Across the four estimators where the slope 

coefficient is statistically different from zero, we see that the half-live falls in the 0.48 to 1.32 

years range. This compares to the half-live from the baseline model of 0.54 to 1.69 years range. 

We conclude that liquidity helps negate asymmetric information in the market thereby 

contributing to a faster SOA, consistent with Hypothesis 2. 

 

C4. Economic significance of the role of oil market 

We have ascertained that SOA is influenced by oil market activities. To this end, we have 

shown that not only oil spot price growth matter to SOA, the US$100 psychological barrier 

and market liquidity also matter to SOA. Even when variables such as the spot/futures price 

volatilities and oil futures price growth do not strongly influence SOA they appear statistically 

significantly in the regression model. This evidence, though, is statistical. The goal of this sub-

section is to test the economic significance of the role of oil market activities in influencing 

SOA.  

[Insert Table VII here] 

 

The economic significance results are presented in Table VII. The absolute value of the effect, 

which is the slope coefficient multiplied by the standard deviation, and the effect on leverage 

from a one standard deviation increase in the oil market activity variable, are reported. We will 

focus directly on the latter since it makes more economic sense. We see that the largest effect 

results from oil market liquidity: a one standard deviation increase in its growth reduces MDR 

by 13.04% of its mean. Both oil spot and futures prices reduce mean MDR by at least 10% 

from a one standard deviation increase in these price growths. Even the volatility of these two 

prices are meaningful; that is, a one standard deviation increase in price volatilities increases 

MDR by at least 5.27% of mean MDR. 

 

IV. Robustness tests 

 

Up to this point, we have tested the robustness of our results on two fronts. First, we have 

employed a large number of estimators and our results on the SOA and the role of the 

determinants of leverage remain broadly intact. Second, we have utilized a wide range of 
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control variables in the leverage model. From this analysis, again, our main conclusion that oil 

market activities influence capital structure holds. 

Several studies allude to the possibility that the relevance of trade-off theory is sensitive to the 

different compositions of stocks, market phases, data subsamples, firm size, leverage measures, 

and nonlinear effects. These issues can shape conclusions on SOA and should, thus, not be 

ignored. We, therefore, investigate the robustness of our conclusions from these perspectives. 

Specifically, we run the following tests: (1) we use an alternative measure of leverage, namely 

BDR, to test the effect of oil market activity on leverage and SOA; (2) we categorize stocks 

into three different sizes to check the sensitivity of SOA to firm size; and (3) we test whether 

positive and negative rates of growth in oil price influence leverage differently. 

 

Our first robustness test deals with an alternative measure of leverage (BDR). We notice that 

the SOA across the five estimators are broadly similar. The effect on SOA from oil price growth 

and market liquidity stand out. Price volatility measures do have an impact but not as 

remarkable as oil price growth and the psychological barrier effects. Volume and basis almost 

have no effects, neither on SOA nor on the leverage directly. Our second robustness test deals 

with potential size effects. We divide our sample of firms using market capitalization into 

small, medium and large firms. We see that the effect both on leverage and on SOA is mainly 

on the large sized firms. In this, the role of oil price growth, psychological barrier and liquidity 

stand out. There is, therefore, a size-based effect story in our analysis. 

 

We ideally would like to sub-sample our data and re-run estimation models. However, when 

we do this split, because our sample is small (1986 to 2015) sub-sampling weakens our sample 

and in fact given the unbalanced nature of the dataset some of the estimators do not work 

parsimoniously. We, therefore, do not engage in a sub-sampling exercise. Finally, oil prices 

are shown to exert a nonlinear effect on stock prices (Narayan and Sharma, 2011). Motivated 

by this evidence, we test the sensitivity of leverage (MDR) to positive and negative changes in 

oil prices. To test this hypothesis, we propose: 

 

                   𝑀𝐷𝑅𝑖𝑡+1 = (1 − 𝛾)𝑀𝐷𝑅𝑖𝑡 + 𝛾𝛽𝑋𝑖𝑡 + δ 𝐺𝑂𝑃𝑖𝑡 ∗ 𝑃𝑂𝑆𝑖𝑡 + 𝛾𝛼𝑖 + 𝜀𝑖𝑡+1              (2) 

 

               𝑀𝐷𝑅𝑖𝑡+1 = (1 − 𝛾)𝑀𝐷𝑅𝑖𝑡 + 𝛾𝛽𝑋𝑖𝑡 + δ 𝐺𝑂𝑃𝑖𝑡 ∗ (1 − 𝑃𝑂𝑆𝑖𝑡) + 𝛾𝛼𝑖 + 𝜀𝑖𝑡+1        (3) 

 

We set POS = 1 when the spot price growth rate is positive and POS = 0 when it is negative. 

We report the SOA, half-live, the slope coefficient, δ, the absolute value of the effect, which is 

the slope coefficient multiplied by the standard deviation, and the effect on leverage from a 

one standard deviation increase in the oil spot price positive and negative change (% SD). 

 

[Insert Table VIII here] 

 

The results are reported in Table VIII. We see that while leverage SOA is insensitive to 

negative and positive oil price changes, the economic effects from a one standard deviation 

increase in positive and negative growths in oil prices on leverage are different.  A one standard 

deviation increase in positive change in oil price is between 10% and 13% (positive change) 

and between 11% and 17% (negative change). This implies that while there is some evidence 

of nonlinear effects of oil prices on leverage there is largely no effect on SOA. 
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V. Concluding remarks 

 

This paper uses a unique firm level data on corporate debt to study whether global energy firms’ 

(756 firms, from 56 countries, over the period 1986 to 2015) leverage decisions are influenced 

by oil market activities. We proxy oil market activities with spot/futures oil price growth, their 

volatilities, the US$100 oil price psychological barrier, price basis, volume of contracts traded 

and open interest (liquidity). We design two hypotheses that have roots in the idea that the oil 

market is characterized by informational asymmetry (or lack of), which would either delay or 

improve SOA to leverage. We find both statistical and economic significance in support of our 

hypotheses. Using oil price growth and the US$100 psychological barrier, we find SOA to 

leverage is slower for energy firms. The SOA for energy firms when not exposed to these prices 

is in the range of 33.6–72.5%, culminating into a half-life of between 0.54 and 1.69 years. 

However, when exposed to these two oil market activity variables, the corresponding half-life 

is between 1.03 and 2.15 years. We also find that market liquidity influences SOA. We find 

that a one standard deviation increase in liquidity has the most (magnitude-wise) effect on 

leverage. It reduces leverage by 13% of mean leverage and improves SOA from about 1.7 years 

to 1.3 years.  

 

The key implication of this result is that an oil market activity-augmented trade-off theory 

model of the determinants of debt offers a better representation of the determinants of capital 

structure for global energy firms. 
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Table I: Descriptive statistics 
This table provides information about variable definition, number of observation, and statistics on the minimum, 

maximum, mean and standard deviation for each variable used in our empirical analysis. The firm data are obtained 

from the Compustat database, while the source of Brent spot price is the US Energy Information Administration 

website (EIA). We obtain the oil price futures, contracts trade (volume), and open interest data from the Commodity 

Research Bureau database.   

Variable Definition N Minimum Maximum Mean Std 

Dev 

MDR Market debt ratio = book 

value of (short-term plus 

long-term) debt 

(Compustat items 

[9]+[34])/ market value of 

assets (Compustat items 

[9]+[34]+[199] [25]). 

6303 0 0.878 0.170 0.218 

BDR Book debt ratio: (long-

term [9] +short-term [34] 

debt)/total assets [6]. 

6303 0 0.945 0.179 0.215 

EBIT_TA Profitability: earnings 

before interest and taxes 

(Compustat items 

[18]+[15] +[16])/total 

assets (Compustat item 

[6]). 

6303 -2.850 0.461 -0.097 0.424 

MB Market to book ratio of 

assets: book liabilities 

plus market value of 

equity (Compustat items 

[9] + [34]+[10]+[199] 

[25])/total assets 

(Compustat item [6]). 

6303 0.142 69.749 2.773 7.872 

DEP_TA Depreciation (Compustat 

item [14])/total assets 

(Compustat item [6]). 

6303 0 0.290 0.043 0.051 

SIZE Log (total asset). 6303 0 14.994 5.682 3.126 

FA_TA Fixed asset proportion: 

property, plant, and 

equipment (Compustat 

item [14)]/total assets 

(Compustat Item [6]). 

6303 0 0.951 0.439 0.296 

R&D_TA R&D expenses 

(Compustat item 

(46))/total assets 

(Compustat item [6]). 

716 0 0.535 0.021 0.066 

R&D_Dummy Dummy variable equal to 

one if firm did not report 

6303 0 1.000 0.887 0.317 
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R&D expenses and zero 

otherwise. 

IND_MED Median industry MDR, 

calculated for each year 

based on the GIC industry 

groups. 

6303 0 0.441 0.088 0.099 

GOP_SPOT Growth rate of Brent oil 

spot price (p), computed 

as p(t)-p(t-1)/p(t-1)]*100. 

32 -45.446 54.010 4.754 24.189 

GOP_FUTURE Growth rate of oil futures 

price (p) computed as p(t)-

p(t-1)/p(t-1)]*100. 

32 -44.587 51.588 4.659 23.607 

VAR_SPOT Volatility of spot price 

return computed using a 

GARCH (1,1) model. 

32 0.530 1.820 0.881 0.283 

VAR_FUTURE Volatility of futures price 

return computed using a 

GARCH (1,1) model. 

32 0.463 1.609 0.765 0.250 

VOL_GROWTH Growth in the number of 

contracts traded per 

annum. 

32 -26.803 143.968 18.727 31.951 

OI_GROWTH Open interest growth: 

growth in the total number 

of outstanding contracts 

that are held by market 

participants per annum. 

32 -22.436 136.933 16.678 28.439 

BASIS Crude oil spot price less 

crude oil futures price. 

32 -1.325 0.715 -0.028 0.494 

D_OIL Dummy variable which is 

equal to 1 when the Brent 

oil price is greater than or 

equal to $100 and 0 

otherwise. 
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Table II: Dataset construction 
This table shows the steps undertaken to construct our data set. The financial data are obtained from the Compustat 

database while the West Texas Intermediate (Brent) crude oil price is downloaded from US Energy Information 

Administration website. 

Steps Countries Firms  Firm-

Year 

Annual financial data of all energy firms (SIC codes 1311; 

Crude Petroleum & Natural Gas, 1381; Drilling Oil & Gas 

Wells, 1382; Oil & Gas Field Exploration Services, 1389; 

and Oil & Gas Field Services, NEC) are downloaded for the 

1986 to 2015 period. 

56 726 8641 

Daily security prices are downloaded from CRSP and 

converted to annual data. 

56 726 7904 

Annual market equity data and annual financial data are 

merged. 

56 726 9484 

Missing values are removed. 56 701 6365 

Firms with less than two years data are removed and data 

are winsorized at 1% and 99%. 

56 673 6303 

Data for Brent crude oil are downloaded and merged with 

financial data.  

56 673 6303 
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Table III: Regression results from the baseline model (without oil price variable) 
This table provides results from the estimation of the partial adjustment model (of speed of adjustment) based on the 

different estimation methods and different dependent variables.  We adopt  the panel fixed effects (FE) estimator,  the 

least squares dummy variable correction (LSDVC) estimator (Bruno, 2005; Kiviet, 1995), the iterative bootstrap-

based correction procedure (BC) proposed by Everaert and Pozzi (2007), the long difference (LD) estimator (Hahn, 

Hausman, and Kuersteiner, 2007), and the generalized method of moments (difference GMM) with initial estimators 

proposed by Arellano and Bond (1991). We consider market debt ratio (MDR) and, for robustness, the book debt ratio 

(BDR) as the dependent variables. Our model is: 𝑀𝐷𝑅(𝐵𝐷𝑅)𝑖𝑡+1 = (1 − 𝛾)𝑀𝐷𝑅(𝐵𝐷𝑅)𝑖𝑡 + 𝛾𝛽𝑋𝑖𝑡  +𝛾𝛼𝑖 + 𝜀𝑖𝑡+1. 𝑋𝑖𝑡 

is a vector of control variables, such as earnings before interest and tax divided by total asset (EBIT_TA), market-to-

book ratio (MB), depreciation scaled by total assets (DEP_TA), size (proxied by the log of total asset), fixed asset 

proportion (FA_TA), research and development expenses as a proportion of total assets (R&D_TA), dummy variable 

for unreported R&D expenses (R&D_Dummy), and the median industry market debt ratio (IND_MED). Finally, ***, 

**, and * denote statistical significance at 1%, 5% and 10%, respectively. 

 FF LSDVC BC LD 
Difference 

GMM 

MDR 0.479*** 0.636*** 0.664*** 0.560*** 0.275*** 

 (10.02) (11.27) (6.04) (4.53) (5.22) 

EBIT_TA -0.026 -0.38 -0.038 -0.028 -0.061 

 (-0.87) (-0.96) (0.71) (-0.76) (-1.87) 

MB 0.001 0.003 0.002 0.003 0.002 

 (0.62) (0.73) (0.69) (1.78) (0.60) 

DEP_TA -0.070 -0.211 -0.343 -1.085*** -0.097 

 (-0.34) (-0.87) (-0.7) (-3.56) (-0.44) 

Size 0.039*** 0.031** 0.027* 0.039** 0.033*** 

 (4.64) (2.81) (1.85) (2.68) (3.07) 

FA_TA 0.079* 0.075 0.083 00.078 0.041 

 (1.68) (1.12) (1.08) (1.20) (0.87) 

R&D Dummy 0.005 0.005 0.041 -0.020 0.040** 

 (0.32) (0.32) (1.67) (-0.53) (2.58) 

R&D_TA 0.011 -0.084 -0.071 0.266*** -0.065 

 (0.10) (-0.54) (-0.40) (4.49) (-0.58) 

IND_MED 0.146** 0.119 0.165* -0.093 0.274*** 

 (1.86) (1.40) (1.81) (-1.14) (3.38) 
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Table IV: Regression results with the inclusion of oil price variable 
This table provides results from the estimation of the partial adjustment model (of speed of adjustment) based on the 

different estimation methods and different dependent variables.  We adopt  the panel fixed effects (FE) estimator,  the 

least squares dummy variable correction (LSDVC) estimator (Bruno, 2005; Kiviet, 1995), the iterative bootstrap-

based correction procedure (BC) proposed by Everaert and Pozzi (2007), the long difference (LD) estimator (Hahn, 

Hausman, and Kuersteiner, 2007), and the generalized method of moments (difference GMM) with initial estimators 

proposed by Arellano and Bond (1991). We consider market debt ratio (MDR) and, for robustness, the book debt ratio 

(BDR) as the dependent variables. Our model is: 𝑀𝐷𝑅(𝐵𝐷𝑅)𝑖𝑡+1 = (1 − 𝛾)𝑀𝐷𝑅(𝐵𝐷𝑅)𝑖𝑡 + 𝛾𝛽𝑋𝑖𝑡  +𝛿𝐺𝑂𝑃𝑖𝑡 +
 𝛾𝛼𝑖 + 𝜀𝑖𝑡+1. Here, GOP is the growth rate of Brent oil price, and 𝑋𝑖𝑡 is a vector of control variables, such as earnings 

before interest and tax divided by total asset (EBIT_TA), market-to-book ratio (MB), depreciation scaled by total assets 

(DEP_TA), size (proxied by the log of total asset), fixed asset proportion (FA_TA), research and development expenses 

as a proportion of total assets (R&A_TA), dummy variable for unreported R&D expenses (R&D_Dummy), and the 

median industry market debt ratio (IND_MED). Finally, ***, **, and * denote statistical significance at 1%, 5% and 

10%, respectively. 

 

 FF LSDVC BC LD 
Difference 

GMM 

MDR 0.511*** 0.680*** 0.724*** 0.526*** 0.569*** 
 (10.94) (11.56) (7.99) (4.24) (16.80) 

GOP -0.0008*** -0.0009*** -0.0009*** -0.0007*** -0.0009*** 

 (-5.18) (-5.29) (-3.96) (-2.61) (-6.12) 

EBIT_TA -0.017 -0.013 -0.007 -0.041 -0.025 
 (-0.58) (-0.47) (-0.22) (-1.04) (-0.88) 

MB 0.002 0.002 0.0004 0.003 -0.002 
 (0.84) (0.73) (0.15) (1.71) (-0.72) 

DEP_TA 0.144 -0.182 -0.326 -1.077*** -0.262 
 (-0.71) (-0.76) (-0.80) (-3.51) (-1.50) 

Size 0.028*** 0.018* 0.012 0.035** 0.008* 
 (3.30) (1.76) (0.91) (2.58) (1.25) 

FA_TA 0.091** 0.071 0.087 0.075 0.155*** 
 (1.98) (1.02) (1.32) (1.15) (3.91) 

R&D Dummy 0.012 0.013 0.037 -0.012 0.040*** 

 (0.77) (0.64) (1.61) (-0.28) (2.65) 

R&D_TA 0.001 -0.024 -0.004 0.247*** 0.008 
 (0.01) (-0.20) (-0.04) (3.53) (0.07) 

IND_MED 0.133* 0.076 0.080 -0.064 0.108 
 (1.70) (0.86) (0.91) (-0.75) (1.54) 
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Table V: Regression results with the inclusion of oil price psychological barrier effect  
This table provides results from the estimation of the partial adjustment model (of speed of adjustment) based on the 

different estimation methods and different dependent variables.  We adopt  the panel fixed effects (FE) estimator,  the 

least squares dummy variable correction (LSDVC) estimator (Bruno, 2005; Kiviet, 1995), the iterative bootstrap-

based correction procedure (BC) proposed by Everaert and Pozzi (2007), the long difference (LD) estimator (Hahn, 

Hausman, and Kuersteiner, 2007), and the generalized method of moments (difference GMM) with initial estimators 

proposed by Arellano and Bond (1991). We consider market debt ratio (MDR) and, for robustness, the book debt ratio 

(BDR) as the dependent variables. Our model is: 𝑀𝐷𝑅(𝐵𝐷𝑅)𝑖𝑡+1 = (1 − 𝛾)𝑀𝐷𝑅(𝐵𝐷𝑅)𝑖𝑡 + 𝛾𝛽𝑋𝑖𝑡  +𝛿𝐷_𝑂𝐼𝐿𝑖𝑡 +
 𝛾𝛼𝑖 + 𝜀𝑖𝑡+1, where D_OIL is the dummy variable, which is equal to 1 when Brent crude oil price is greater than or 

equal to $100 and 0 otherwise, and 𝑋𝑖𝑡 is a vector of control variables, such as earnings before interest and tax divided 

by total asset (EBIT_TA), market-to-book ratio (MB), depreciation scaled by total assets (DEP_TA), size (proxied by 

the log of total asset), fixed asset proportion (FA_TA), research and development expenses as a proportion of total 

assets (R&A_TA), dummy variable for unreported R&D expenses (R&D_Dummy), and the median industry market 

debt ratio (IND_MED). Finally, ***, **, and * denote statistical significance at 1%, 5% and 10%, respectively. 

 FF LSDVC BC LD 
Difference 

GMM 

MDR 0.478*** 0.644*** 0.688*** 0.557*** 0.534*** 
 (10.09) (11.38) (6.88) (4.88) (15.90) 

D_OIL -0.029** -0.028** -0.026** 0.019 -0.026** 

 (-2.54) (-2.36) (-2.48) (1.14) (-2.43) 

EBIT_TA -0.027 -0.022 -0.018 -0.026 -0.022 
 (-0.93) (-0.79) (-0.45) (-0.73) (-0.81) 

MB 0.001 0.001 0.000 0.003** -0.003 
 (0.55) (0.48) (0.06) (2.11) (-1.09) 

DEP_TA 0.087 -0.114 -0.234 -1.11*** -0.322* 
 (-0.42) (-0.46) (-0.61) (-3.58) (-1.84) 

Size 0.042*** 0.033*** 0.030** 0.034** 0.013** 
 (4.96) (2.95) (2.43) (2.43) (2.05) 

FA_TA 0.070 0.052 0.064 0.076 0.144*** 
 (1.48) (0.74) (0.81) (1.15) (3.64) 

R&D Dummy 0.009 0.009 0.041* -0.024 0.041*** 

 (0.57) (0.46) (0.81) (-0.60) (2.71) 

R&D_TA 0.021 0.003 0.048 0.241*** 0.039 
 (0.19) (0.02) (0.26) (3.56) (0.35) 

IND_MED 0.23 0.073 0.088 -0.115 0.121* 
 (1.55) (0.80) (0.99) (-1.41) (1.73) 
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Table VI: Regression results from other proxies of oil market activities 
This table provides results from the estimation of the partial adjustment model (of speed of adjustment) based on the 

different estimation methods and different dependent variables.  We adopt  the panel fixed effects (FE) estimator,  the 

least squares dummy variable correction (LSDVC) estimator (Bruno, 2005; Kiviet, 1995), the iterative bootstrap-

based correction procedure (BC) proposed by Everaert and Pozzi (2007), the long difference (LD) estimator (Hahn, 

Hausman, and Kuersteiner, 2007), and the generalized method of moments (difference GMM) with initial estimators 

proposed by Arellano and Bond (1991). We consider market debt ratio (MDR) as the dependent variable. Our base 

model is: 𝑀𝐷𝑅𝑖𝑡+1 = (1 − 𝛾)𝑀𝐷𝑅𝑖𝑡 + 𝛾𝛽𝑋𝑖𝑡  +𝛾𝛼𝑖 + 𝜀𝑖𝑡+1. In panel B through panel G, we include each of the proxy 

variable representing oil market activity, from futures price growth (GOP_FUTURE) to open interest growth 

(OI_GROWTH). Future/spot price (p) growth is computed as: [p(t)-p(t-1)/p(t-1)]*100. Future/spot price return 

volatility is extracted through estimating a GARCH(1,1) model, and call this VAR_SPOT and VAR_FUTURE 

representing spot price return volatility and futures price return volatility, respectively. Volume growth 

(VOL_GROWTH) computed by log [vol(t)/vol(t-1)] *100, where vol is volume. Open interest growth (OI_GROWTH) 

is computed as log [OI(t)/OI(t-1)]*100, where OI is open interest. In addition, D_OIL represents the oil price 

psychological barrier effect, it is a dummy variable which takes a value 1 in the year in which the Brent crude oil price 

is at least US$100 and a value of 0 otherwise. BASIS as the difference between WTI spot and futures prices. In each 

panel, we report the slope coefficient associated with 1 − 𝛾, the SOA which is the 𝛾, the half- life statistic, which is 

computed as log(0.5)/log( 1 − 𝛾) .   Finally, ***, **, and * denote statistical significance at 1%, 5% and 10%, 

respectively. 

  FE BC 
Difference 

GMM 
LSDVC LD 

Panel A: Base Model 

1 − 𝛾 0.497*** 0.664*** 0.275*** 0.636*** 0.56*** 
 (10.02) (6.04) (5.22) (11.27) (4.53) 

SOA (%) 0.503 0.336 0.725 0.364 0.44 

half-life (year) 0.991 1.693 0.537 1.532 1.195 

Panel B: With inclusion of Future price growth  (GOP_FUTURE) 

Coefficient 
-

0.0008*** 
-0.0010*** -0.0008*** 

-0.001*** -0.0007* 
 (-4.30) (-4.10) (-4.43) (-4.08) (-2.30) 

1 − 𝛾 0.426*** 0.635*** 0.276*** 0.603*** 0.527*** 
 (8.23) (6.48) (5.19) (11.12) (4.30) 

SOA (%) 0.574 0.365 0.724 0.397 0.473 

      

half-life (year) 0.812 1.526 0.538 1.370 1.082 

Panel C: With inclusion of BASIS 

Coefficient -0.003 0.003 0.004 -0.005 0.014 
 (-0.32) (0.28) (0.47) (-0.42) (1.29) 

1 − 𝛾 0.39*** 0.582*** 0.22*** 0.562*** 0.513*** 
 (7.45) (6.00) (4.15) (10.02) (3.84) 

SOA (%) 0.61 0.418 0.78 0.438 0.487 

half-life (year) 0.736 1.281 0.458 1.203 1.038 

Panel D: With inclusion of Spot  return volatility(VAR_SPOT) 

Coefficient 0.053*** 0.049** 0.048*** 0.056*** 0.004 
 (2.72) (2.43) (2.82) (2.61) (0.17) 

1 − 𝛾 0.398*** 0.597*** 0.246*** 0.571*** 0.567*** 
 (7.69) (5.58) (4.69) (10.23) (4.52) 

SOA (%) 0.602 0.403 0.754 0.429 0.433 

half-life (year) 0.752 1.344 0.494 1.237 1.222 
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Panel E: With inclusion of Future return volatility (VAR_FUTURE) 

Coefficient 0.053** 0.046** 0.046** 0.057** 0.002 
 (2.57) (2.18) (2.50) (2.45) (0.07) 

1 − 𝛾 0.397*** 0.597*** 0.245*** 0.57*** 0.565*** 
 (7.66) (5.59) (4.66) (10.22) (4.49) 

SOA (%) 0.603 0.403 0.755 0.43 0.998 

half-life (year) 0.750 1.344 0.493 1.233 0.112 

Panel F: With inclusion of volume growth (VOL_GROWTH) 

Coefficient 0.0001 0.000 -0.0001 0.0001 0.0001 
 (0.48) (0.35) (-0.54) (0.47) (0.36) 

1 − 𝛾 0.387*** 0.586*** 0.234*** 0.560*** 0.59*** 
 (7.44) (5.90) (4.45) (10.07) (4.94) 

SOA (%) 0.613 0.414 0.766 0.460 0.41 

half-life (year) 0.730 1.297 0.477 0.893 1.314 

Panel G :With inclusion of open interest growth (OI_GROWTH) 

Coefficient 
-

0.0001*** 
-0.001*** -0.001*** 

-0.001*** 0.0002 
 (-2.62) (-2.65) (-3.31) (-2.70) (0.31) 

1 − 𝛾 0.394*** 0.591*** 0.239*** 0.566*** 0.573*** 
 (7.62) (5.39) (4.55) (10.06) (4.84) 

SOA (%) 0.606 0.409 0.761 0.434 0.427 

half-life (year) 0.744 1.318 0.484 1.218 1.245 
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Table VII: Economic Significance 

 
This table provides results from the economic significance analysis of the importance of the oil market variables. The 

statistical results obtained on the slope coefficient relating to each oil market variable from the iterative bootstrap-

based correction procedure (BC) and the difference generalized method of moments (GMM) methods are used to 

estimate economic significance. We report the absolute value of the effect, which is the slope coefficient multiplied 

by the standard deviation, and the effect on leverage from a one standard deviation increase in the oil market activity 

variable (% SD).  

 

Variables  BC  Difference GMM 

GOP_SPOT 
Absolute value -0.022 -0.022 

% SD -9.986 -9.986 

GOP_FUTURE 
Absolute value -0.024 -0.019 

% SD -10.829 -8.663 

VAR_SPOT 
Absolute value 0.014 0.014 

% SD 6.361 6.231 

VAR_FUTURE 
Absolute value 0.012 0.012 

% SD 5.275 5.275 

VOL_GROWTH 
Absolute value 0.000 -0.003 

% SD 0.000 -1.466 

OI_GROWTH 
Absolute value -0.028 -0.028 

% SD -13.045 -13.045 

BASIS 
Absolute value 0.001 0.002 

% SD 0.680 0.906 
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Table VIII: Nonlinear effects of oil price on leverage 

 
This table provides results for the effect of positive and negative spot price growth rate on leverage. We adopt  the 

panel fixed effects (FE) estimator,  the least squares dummy variable correction (LSDVC) estimator (Bruno, 2005; 

Kiviet, 1995), the iterative bootstrap-based correction procedure (BC) proposed by Everaert and Pozzi (2007), the 

long difference (LD) estimator (Hahn, Hausman, and Kuersteiner, 2007), and the generalized method of moments 

(difference GMM) with initial estimators proposed by Arellano and Bond (1991). We consider market debt ratio 

(MDR) as the dependent variable. Our considered models are 𝑀𝐷𝑅𝑖𝑡+1 = (1 − 𝛾)𝑀𝐷𝑅𝑖𝑡 + 𝛾𝛽𝑋𝑖𝑡  + δ 𝐺𝑂𝑃𝑖𝑡 ∗
𝑃𝑂𝑆𝑖𝑡 + 𝛾𝛼𝑖 + 𝜀𝑖𝑡+1  and  𝑀𝐷𝑅𝑖𝑡+1 = (1 − 𝛾)𝑀𝐷𝑅𝑖𝑡 + 𝛾𝛽𝑋𝑖𝑡  + δ 𝐺𝑂𝑃𝑖𝑡 ∗ (1 − 𝑃𝑂𝑆𝑖𝑡) + 𝛾𝛼𝑖 + 𝜀𝑖𝑡+1 . We set POS 

= 1 when the spot price growth rate is positive and POS = 0 when it is negative. We report the SOA, the half-live, the 

slop coefficient, δ, the absolute value of the effect, which is the slope coefficient multiplied by the standard deviation, 

and the effect on leverage from a one standard deviation increase in the oil spot price change (% SD).  

 

 Type of effect Statistics  FF LSDVC BC LD GMM 

Positive 

growth 

1 − 𝛾 0.506 0.68 0.713 0.522 -0.23 

SOA (%) 0.494 0.32 0.287 0.478 N/A 

half-life (years) 1.018 1.797 2.049 1.066 N/A 

Coefficient 
-0.0010 -0.0011 -0.0010 -0.0012 -0.0009 

(-3.88) (-3.70) (-2.84) (-2.26) (-3.64) 

Absolute value -0.024 -0.027 -0.024 -0.029 -0.022 

% SD -11.10 -12.21 -11.10 -13.32 -9.99 

Negative 

growth 

1 − 𝛾 0.499 0.671 0.710 0.548 0.331 

SOA (%) 0.501 0.329 0.29 0.452 0.669 

half-life (years) 0.997 1.737 2.024 1.152 0.627 

Coefficient 
-0.0014 -0.0015 -0.0014 -0.0010 -0.0013 

(-4.89) (-5.40) (-4.71) (-2.74) (-5.00) 

Absolute value -0.034 -0.036 -0.034 -0.024 -0.031 

% SD -15.53 -16.64 -15.53 -11.10 -14.42 
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APPENDIX A: A plot of market activity variables and descriptive statistics 

This figure plots time-series data on the growth rate of oil price (GOP_SPOT), growth rate of futures price (GOP_FUTURE), growth 

rate of open interest (OI_GROWTH), variance of futures price returns (VARIANCE_FUTURE), variance of spot price returns 

(VARIANCE_SPOT), growth rate of trading volume (VOL_GROWTH), and basis (BASIS). The plot covers the period 1986 to 2015.  
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Descriptive statistics for oil market activity variables 

 
This table presents descriptive statistics for each of the seven oil market activity variables for the time period 1986-2015. Each variable is described in column 1. 

Mean and standard deviation appear in columns 2 and 3, respectively. The first order autoregressive (AR(1)) coefficient together with the t-statistic testing the null 

hypothesis that the coefficient is zero is reported in parenthesis. Column 5 reports unconditional correlation between the market activity variable and MDR, and in 

parenthesis the t-statistic examining the null hypothesis that the correlation is zero is reported. The last column reports results from a unit root test based on the 

augmented Dickey-Fuller model, which includes a constant term but no time trend and the optimal lag length to control for serial correlation is selected using the 

Schwarz Information Criterion. The t-statistic testing the null of a unit root is reported in parenthesis in column 6. 

 

1 2 3 4 5 6 

Variables Mean 
Standard 

deviation 

AR(1) 

coefficient                      

(t-stat.) 

Unconditional 

correlation 

 (t-stat.) 

ADF Unit 

root test 

 

Oil spot price growth GOP_SPOT 6.328 26.245 
0.123  

(0.637) 

-0.105  

(-8.348) 

-0.877 

(-4.523) 

Oil future price growth GOP_FUTURE 4.659 23.607 
-0.018  

(-0.092) 

-0.098  

(-7.617) 

-1.018 

(-5.153) 

Variance of spot price 

return 
VAR_SPOT 0.881 0.283 

0.009  

(0.052) 

0.051  

(3.896) 

-0.991 

(-5.470)  

Variance of future price 

return 
VAR_FUTURE 0.765 0.250 

0.014  

(0.080) 

0.046  

(3.521) 

-0.985 

(-5.413)  

Difference between spot 

and future price 
BASIS -0.028 0.494 

0.425  

(2.391) 

-0.007  

(-0.526) 

-0.575 

(-3.233)  

Open interest growth OI_GROWTH 16.678 28.439 
0.402  

(4.382) 

-0.066  

(-5.066) 

-0.598 

(-6.513)  

Volume growth VOL_GROWTH 18.727 31.951 
0.384  

(3.538) 

-0.022  

(-1.718) 

-0.616 

(-5.665)  
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Abstract 

 

We study the impacts of variable renewable energy (vRES), prices of substitute fuels, power price volatility, 

structural breaks, and seasonality on the hedgeable power spreads (profit margins) of the main providers of 

flexibility in the current power systems - gas and coal power plants. We focus on three European electricity 

markets (Germany, UK, Nordic) over the time period 2009-2016. We show that the total vRES capacity 

installed during 2009-2016 is associated with a drop of 3-22% in hedgable profit margins of coal and 

especially gas power generators. We also find significant persistence (and asymmetric effects) in the power 

spreads volatility using a univariate TGARCH model. 

Keywords: Financial risk management; Hedging; Futures markets; Electricity markets 
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1. Introduction 

The electric power sector is undergoing a rapid transition where the share of net electricity generation in 

the total energy consumption is increasing globally due to digitalization (Helm 2017). The growth of 

electric vehicles, demand response programs, energy storage, self-generation, internet of things (IoT), and 

variable renewable energy sources (vRES) in national energy mixes are some factors changing the risk 

profiles market participants will face. In this transforming energy market environment, a question arises 

whether the traditional hedging mechanisms and tradable products are still relevant and sufficient for risk 

management. Financial derivatives were adopted by electricity market participants relatively recently, in 

1990s, when the markets were liberalized. However, these products were designed for centralized power 

systems with a dispatchable generation fleet, which is not the case of the current market characterised by 

rapid adoption of intermittent renewable energy sources, such as wind and solar power. It is therefore 

essential to clearly understand the newly emerging factors shaping the risks market participants face. 

In electricity markets, power generators use derivatives to lock-in long-run prices to cover fixed costs, 

retailers use derivatives to lock-in volatile wholesale prices, and commodity traders/speculators look for 

profits from short-term price fluctuations. This work primarily focuses on the first group, namely power 

generators who typically lock-in a portion of their revenue margin in advance by selling derivatives 

contracts on outputs (electricity) and buying derivatives contracts on inputs (fuel and carbon) ahead of the 

actual delivery.  

Specifically, we are interested in technologies that provide flexibility and dispatchability to the power 

system, meaning technologies with the capability to balance changes in power supply and demand and to 

provide power when vRES are not available. Coal and gas-fired power plants are flexible technologies that 

we focus on. This is in contrast to typical must-run baseload technologies, such as nuclear, or more variable 

generation, such as wind and solar. We concentrate particularly on these technologies because the outlined 

transformative trends, such as the increase in vRES production dependent on local weather, increase the 

need for flexibility (Belderbos and Delarue 2015). At the same time, flexibility providers in liberalized 

electricity markets need to recover costs and gain reasonable profits to stay in the market. We define a 

proxy for hedgeable profitability of a given energy technology as power spread.  

For gas-fired assets, the differential between prices of electricity and fuel is called spark spread, for coal-

fired assets, this differential is called dark spread. Because gas and coal are sources of greenhouse gases, 

power generators using these fuels in Europe need to acquire CO2 emission allowances. When carbon costs 

are considered in spark and dark spreads, they are called clean spark and clean dark spreads.  

In this work, we carry out cross-country analysis of three different European electricity markets, namely 

Germany, UK and Nordics43, and explore the drivers of hedgeable revenue margins proxied by the two 

clean power spreads just described. This work contrasts the incentives to provide flexibility, as manifested 

by power spreads (revenue margins), with the underlying fundamental factors impacting these spreads. In 

addition to seasonality, fuel prices, and power price volatility, we particularly focus on the impacts of solar 

and wind generation, which we hypothesize decrease the clean spark and clean dark spreads.  

Ultimately, the underlying issue is the energy policy trilemma, which is environmental sustainability, 

reliability of supply, and economic competitiveness. The support of vRES is associated with environmental 

sustainability, while the question of adequate hedging mechanisms for dispatchable and flexible generation 

is associated with both reliability of supply and economic competitiveness. Hence, the key motivation of 

this work is to evaluate the impacts of current policy which promotes rapid deployment of vRES under the 

requirement of greater system flexibility on the one hand, with the risk management reality of flexibility 

providers on the other hand. If there are fundamental factors impeding risk management of flexibility 

                                                           
43 By the term Nordic we refer jointly to Norway, Sweden, Finland and Denmark. 
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providers, these have to be first identified and understood before designing new market mechanisms, such 

as capacity markets, aligned with the objectives of a sustainable, competitive and secure energy market. 

Misaligned policies may lead to consumers paying risk premia for the increased risk exposure of flexibility 

providers or lead to higher electricity prices because of the lack of investments into flexible capacity. 

We estimate a jointed model for the mean and variance of the futures power spreads on front-month 

contracts in daily frequency for the period 2009-2016. Our statistical model quantifies the effects of changes 

in fuel futures prices (gas and coal), volatility of power futures prices, seasonality, and expected wind and 

solar generation on power spreads. By explicitly modelling variance (volatility) of power spreads with 

asymmetric threshold generalized autoregressive conditional heteroscedasticity (TGARCH), we reach two 

methodological benefits and contributions. 

First, because volatility is a key input in option pricing formulas, which is an area typically dominated by 

reduced-form (stochastic) models (Cartea and Villaplana 2008, Carmona, Coulon and Schwarz 2012), our 

econometric approach presents a practical alternative for multi-asset derivatives pricing. Simplified 

derivatives valuation and risk management may be appreciated especially by risk managers who often rely 

on complex third party software. Practicality and model agility may be highly valued to reduce cash-flow 

variation, especially with the growth of vRES and CO2 prices. The second methodological benefit of 

explicitly modelling volatility is that our hypothesized determinants of power spreads are more robust and 

less prone to false sense of precision. This is because treating expected squared error terms equally at any 

given point (homoscedasticity) when this assumption does not hold (heteroscedasticity) leads to biased 

standard errors and confidence intervals, thus giving a false sense of precision (R. Engle 2001).  

The current state of the art econometric literature has typically focused on modelling determinants of 

commodity prices, such as weather, market tightness, or demand flexibility, in the spot market. This is 

understandable, because spot prices drive optimization decisions and physical portfolio dispatch. In 

contrast, the literature focusing on the futures market prices has mostly focused on hedging effectiveness, 

cashflow at risk analyses, and volatility forecasting. This is also understandable, because the uncertainty of 

future supply and demand factors affecting derivatives’ prices is inherently high and dependent on how far 

on the forward curve we go. For instance, short-term futures are typically impacted by storage conditions, 

whereas long-term futures are impacted by the future potential energy supply (Pilipovic 2007). We attempt 

to fill this gap between spot and futures commodity price research and explicitly model the determinants of 

the hedgeable profit margins in the futures market. 

Finally, our approach enables us to distinguish and quantify the individual factors affecting the hedgeable 

profit margins of flexibility providers. Such distinction of factors may better inform policy makers and 

regulators in designing adequate and reliable power markets. Additionally, by linking electricity, emissions, 

and fuels across three different electricity markets in Europe, we bring comprehensive empirical evidence 

on evolution and determinants of hedgeable profit margins for supply-side providers of flexibility.  

The paper is structured as follows. Section 2 reviews mostly modelling literature on power spreads 

valuation. Section 3 initially outlines the main drivers of electricity supply and demand in the studied 

regions before proposing the main drivers of power spreads. The section continues with data and model 

description. Section 4 summarizes the main results which are further discussed in section 5. The paper ends 

with conclusions in section 6. 

 

2. Literature review 
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The literature on commodity spot and derivatives pricing is vast. As a starting point, the research field can 

be classified according to modelling approaches of electricity prices44.  Five general modelling approaches 

can be identified (Weron 2014): i) Multi-agent (multi-agent simulation, equilibrium, game theoretic), ii) 

Fundamental (structural), iii) Reduced-form (quantitative, stochastic), iv) Statistical (econometric, 

technical analysis), and v) Computational intelligence techniques (artificial intelligence-based, non-

parametric, non-linear statistical). Next, we focus on the two most widely applied approaches in derivatives 

pricing – reduced-form, and statistical.  

Reduced-form models, also called financial mathematical models (Möst and Keles 2010), are dominating 

the electricity derivatives valuation field which focuses on the stochastic behaviour of commodity prices in 

one- or multi-factor models (Mahringer and Prokopczuk 2015, Carmona, Coulon and Schwarz 2012, 

Islayev and Date 2015, Barlow 2002). These stochastic factors are typically mean-reversion (Brownian 

motion), jump diffusion (Poisson process with jump terms), and regime switching (Markov models), which 

undisputedly play a central role in valuing power derivatives. These models take prices as exogenous and 

focus on modelling the futures and volatility curves. Their main usage is in pricing financial derivatives 

and short term forecasting of spot and futures prices (Suren and Date 2015). Some of the studies applying 

stochastic approaches particularly focus on seasonality in volatility   (Fanelli, Maddalena and Musti 2016, 

Paschke and Prokopzuk 2010, Back, Prokopzuk and Rudolf 2013), which is an important factor in the 

valuation of commodity derivatives. Reduced-form models applied to power spreads predominantly focus 

on the value of spread options (Carmona, Coulon and Schwarz 2012, Deng, Johnson and Sogomonian 2001, 

Mahringer and Prokopczuk 2015, Hsu 1998, Dempster, Medova and Tang 2008), which is mainly because 

of the versatility of options (keeping the upside while protecting the downside). Additionally, the choice of 

running a power plant or storage, if the operating margin between power price and the operating cost is 

positive, gives a rise to an option value of a power plant. The choice to run a power plant or not can then 

be valued as option according to option value methods, such as Black-Scholes. Option spreads are often 

approximated by Monte Carlo, tree methods, and partial differentiation equation (PDE) solvers (Carmono 

and Durrleman 2003). A survey of reduced-form models in power futures setting is present in (Eydeland 

and Wolyniec 2003, Pilipovic 2007).  

Statistical (econometric) techniques do not solely focus on the replication of price dynamics as the reduce-

form models do and they deal with stochastic processes differently (Möst and Keles 2010). In addition to 

using past price characteristics to explain price fluctuations, statistical models incorporate also the current 

and/or past values of exogenous factors (Weron 2014). In an electricity price modelling setting, the typical 

exogenous factors are, for example, electricity consumption and production, weather, and fuel prices. 

Statistical models thus focus on the impact of explanatory variables on the price fluctuations, which enables 

interpretation of the physical (fundamental) components in the analysis. Since the main purpose of this 

study is to explain the impacts of exogenous variables on the hedgeable profit margins, we embrace the 

econometric approach to price modelling. 

Econometric models have to address the typical and complex empirical features of (daily) electricity prices, 

namely extreme volatility, excess kurtosis, positive skewness, price jumps, seasonality, and conditional 

heteroscedasticity. Weron and Zator (2014) point out important methodological pitfalls of applying linear 

regression models for explaining the relationship between spot and futures electricity prices, which can be 

generalized to electricity prices (spreads). They mention three issues needing attention: (1) bias originating 

from simultaneity (endogeneity) problems, i.e. there is often a loop of causality between dependent and 

independent variables; (2) the effect of correlated measurement error; and (3) the impact of seasonality on 

                                                           
44 Alternative classification could be along the electricity derivatives pricing approaches, namely 1) Theory of storage 

(Kaldor 1939), where forward commodity contract price is equal to the spot discounted by interest rate and the storage 

costs; 2) Equilibrium pricing (Keynes 1930), where futures prices are related to the expected spot prices; and 3) 

Stochastic pricing models (Benth and Koekabakker 2008, Eydeland and Wolyniec 2003), vis discussion on the 

reduced-form modelling. 
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regression models. We explain in detail how we address these fundamental issues in the methods section 

below. 

The mean-reverting and seasonal behaviour of electricity prices is often modelled by autoregressive (AR-

type) time series models (Weron 2014) and volatility clustering by conditional heteroscedasticity models 

(ARCH). Non-linear effects, especially price-spikes, are modelled by regime-switching and authors 

typically combine and/or compare model performance under different specifications. For example, 

Karakatsani and Bunn (2008) build a fundamental regression model for intra-day electricity prices and 

compare its day-ahead forecasting performance to time-varying and regime-switching models. In their 

specification, they include multiple economic, technical, strategic, risk, behavioural and market design price 

effects, such as demand forecast, demand slope, demand volatility, margin (excess of generation capacity), 

price volatility, and seasonality. Weron and Misiorek (2008) show that AR electricity price models with 

system load as the exogenous variable generally perform better than pure price models. Also Kristiansen 

(2012) uses the Nordic demand and Danish wind power as exogenous variables in an AR model to forecast 

the Nordic hourly day-ahead prices. Applied directly to spot spark spreads, Woo, et al. (2012) estimate a 

twostep regression model applying a logistic and ARCH log linear regression using demand, wind 

generation and fuel prices, among others. Illustrated on European Union Allowance (EUA) future returns, 

Boersen and Scholtens (2014) employ a threshold GARCH model and study the impacts of natural gas, oil 

prices, fuel switching, electricity futures price, and weather (heating degree days) on the yearly futures 

carbon price. 

As was briefly illustrated, most of the statistical models focus on spot prices rather than derivatives prices, 

which is understandable because spot prices drive optimization decisions and physical portfolio dispatch. 

An additional reason is that derivatives prices are not simple forecasts of expected future outcome. Instead, 

in addition to being a function of the basic fundamental drivers of supply and demand for the physical 

commodity, derivatives prices also reflect the relative risk aversion of participants, the speculative positions 

and the perceived cost of risk (Roques, Newbery and Nuttall 2004, Karakatsani and Bunn 2008). Hence, 

electricity spot price modelling with econometric techniques need to capture all factors affecting the current 

supply and demand. Nonetheless, similar techniques applied to derivatives prices need to consider the future 

factors of supply and demand affecting the expected value of a derivative during its settlement period. 

Forecasting input factors by, for example, exponential smoothing methods, bears obvious risks of 

forecasting errors that just surge with the increase of forecasting window.  

The uncertainty of future inputs presents the biggest challenge for applying econometric techniques to 

derivatives valuation. To overcome this limitation, instead of relying on point estimates, the econometric 

model can work with different input scenarios which establish probable boundaries. Other approaches to 

overcome the uncertainty of forecasted inputs include use of the nearest forward contract, such as front-

month, which is convergent with the spot price because disparities between the two are quickly arbitraged 

away. The nearest contracts are usually the most traded and liquid representing the short-term portion of 

the forward curve which is often used as a spot price indicator. In fact, the influence of past spot electricity 

prices on the future electricity prices has been repeatedly documented (Karakatsani and Bunn 2008, Redl, 

et al. 2009). In such a case, the present supply and demand factors could be used to explain the nearest 

contract price dynamics without inherently increasing the model’s uncertainty and complexity. 

An additional challenge in modelling derivatives of power spreads lies in the fundamental structure of the 

spread itself. Power spreads, be it clean dark or clean spark, are by design cross-commodity derivatives 

consisting of fuel prices, electricity prices and carbon allowance prices. Each of these price series typically 

constitutes a separate pricing model. Nonetheless, to uncover the average price formation process of such 

derivatives, a joint model for all commodities is required (Carmona, Coulon and Schwarz 2012).  

 



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

204 

 

3 Material and methods 

In this section, we first shed light on electricity supply and demand in the three European electricity markets 

here considered. Then, we discuss, propose and define a set of influential determinants of power spreads. 

Finally, we present data used in the empirical analysis and the modelling details. 

 

3.1 Fundamentals of electricity supply and demand 

This work focuses on three European electricity markets (Nordic, German, and UK) which are set in specific 

techno-economic environments exerting influence on the types and levels of risks the flexibility providers 

face. It is therefore essential to first outline and understand the relevant local factors of electricity supply 

and demand45 before proposing relevant determinants of power spreads. As a reminder, by Nordic we 

jointly refer to Norway, Sweden, Finland, and Denmark. 

On the supply side, the power systems in Germany and the UK have traditionally relied on thermal 

generation (coal, gas, nuclear). However, since the introduction of EU targets for reductions in carbon 

emissions and the promotion of RES, both countries have since 2008 seen a rapid growth in capacity and 

power generation from vRES (particularly wind and solar)46. On the contrary, the Nordic electricity market 

is a hydro-dominated system with a large share of indigenous generation from biomass, making the 

adoption of vRES less rapid, compared to the two other cases. With respect to market design, the UK 

slightly differs from the two other markets due to the introduction of separate carbon price floor and 

capacity market mechanisms in 2013 and 2014, respectively. The UK and Nordics are generally less 

interconnected by cross-border transmission lines compared to Germany which is part of the highly meshed 

transmission grid of the Continental Europe synchronous area. 

On the demand side, the studied markets share similarities with respect to energy intensity (mining, 

manufacturing, etc.), macroeconomic development (omitting the recent Brexit) and demographic structure, 

but differ with respect to weather characteristics and deployment of energy saving technology, such as 

smart metering. The peak demand in 2016 was comparable across the regions, namely 82GW, 72GW, and 

70GW for Germany, Nordics, and the UK, respectively (ENTSO-E 2017). The wholesale electricity prices 

in all three markets have systematically decreased since 2008 generally due to the decreasing fuel 

commodity prices and increasing production from vRES.  

 

3.2 Drivers of power spreads 

Next, we propose a set of potential influential drivers of power spreads, define how they are measured and 

provide explanations for their selection based on theoretical considerations and market intuition. The 

summary of proposed power spread drivers is presented in  

  

                                                           
45 See (ENTSO-E 2017) for an overview of European electricity supply and demand, and (OME 2007) for their drivers.  
46 See 

 

Figure  in Appendix for a summary of yearly development of installed vRES and electricity consumption in the three 

studied markets. 
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Table . 

Market participants who use power spreads for hedging (flexibility and dispatchability providers) need to 

pay attention to the fundamental supply and demand changes of the underlying 47  assets (electricity, 

coal/gas, CO2). As discussed in section 0 and 3.1, the effects of vRES production, especially solar and wind, 

on electricity prices, are well known. For this reason, we study the effect of expected solar and wind 

production (EPvRES) on future power spreads. Our empirical estimation will work with front-month futures, 

so we need to estimate the expected solar and wind generation in the next month. We utilize the available 

data set on hourly PV and wind capacity factors for the EU-28 plus Norway (Pfenninger and Lain 2016, 

Lain and Pfenninger 2016) and calculate twelve long-run capacity factors (LCFvRES,m,c) for country c and 

month m based on the mean capacity factors from the years 2006-2016. Then, we take the installed capacity 

values for wind and solar in each country during the month of the underlying contract (ICvRES,c,m+1) 48 and 

multiply them with the long-run capacity factors and the number of hours in the underlying month (hm+1). 

Eq. 1 expresses the next month’s expected production (GWh) of vRES technology in a country c. 

 𝐸𝑃𝑣𝑅𝐸𝑆,𝑐,𝑚+1 =  𝐿𝐶𝐹𝑣𝑅𝐸𝑆,𝑐,𝑚+1 ∗  𝐼𝐶𝑣𝑅𝐸𝑆,c,𝑚+1 ∗ hm+1 (1) 

Other studies also consider the impacts of installed solar and wind generation capacity on electricity spot 

(Rubin and Babcock 2013) and futures (Cartea and Villaplana 2008, Carmona and Coulon 2014)  prices. 

However, in an econometric setting, using installed capacities leads to high collinearity between solar and 

wind capacity for the considered countries, possibly biasing the results. 

Price of the substitute fuel is an important driver of future (Carmona, Coulon and Schwarz 2012) and spot 

(C.-K. Woo, et al. 2012) power spreads. Fuel prices also impact the cost of CO2 (Mansanet-Betaller, Pardo 

and Valor 2007, C.-K. Woo, et al. 2012) . We consider the price of the substitute fuel, meaning the price of 

gas in the clean dark spread model and the price of coal in the clean spark spread model. We expect to see 

a positive relationship between the price of fuel substitute and the power spread in question. The 

interpretation is that when the substitute fuel gets more expensive, using the current fuel becomes more 

profitable. 

Volatility of power futures prices has been also shown to affect spot (Karakatsani and Bunn 2008) and 

futures (Fanelli, Maddalena and Musti 2016) electricity prices. In our definition of power spreads (Eq.2 

below), we use peak load power prices for gas and baseload power prices for coal technologies. This is 

because during our sample period (2009-2016) coal-fired power plants were typically run to meet 

continuous energy demand (baseload) and gas-fired power plants typically operated during high energy 

demand (peak load) 49. To keep our analysis comparable, we estimate the volatilities of power futures prices 

based on a five-day rolling window, defined as coefficient of variation of front-month electricity peak load 

price when studying clean spark spreads and front-month electricity baseload price when studying clean 

dark spreads. The volatility in futures power prices reflects risks for hedgers and traders, so investigating 

the effects on power spreads may reveal who is bearing these risks (buyers or sellers). 

We further address seasonality in the mean of power spreads by the season-of-the-year effect, namely 

spring (Mar-May), summer (Jun-Aug), fall (Sep-Nov) and winter (Dec-Feb). The impact of seasonality in 

mean equations is typically captured by daily, monthly, and quarterly dummies (Karakatsani and Bunn 

2008), and sine/cosine-based specifications. Properly addressing seasonality in the price series nets out the 

average change in power spreads resulting from seasonal fluctuations. Cartea and Villaplana (2008) also 

                                                           
47 Other outputs, such as capacity or ancillary services, and inputs, such as chemicals, spare parts, or labour, could be 

considered to affect the power spreads. However, over the near-term planning horizons, the impacts of these additional 

factors on cash flow uncertainty of flexibility providers are far less than that of fuel, carbon and power prices. 
48 From the current trading month (m), this is the next month’s installed capacity (m+1). Since the installed capacities 

do not drastically change month-to-month, we consider this approach realistic and reliable.  
49 These dynamics might have changed in the more recent time, i.e. 2017, especially in the UK, however, such time 

period is not included in our sample.  
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show a seasonal component (summer, spring, fall, and winter) of the time-dependent volatility. We have 

tested the seasonal effect in volatility and have not found any significant effects, thus they are not reported. 

Finally, we need to control for possible structural breaks in our time series (2009-2016). We identified two 

main country-specific events with possible spillover effects. The first event followed the Fukushima nuclear 

disaster in 11th March 2011, which led the German government to temporarily (but effectively) shut down 

8 out of 17 German nuclear reactors on 15th March 2011. We hypothesize that the effect of removing over 

8GW of capacity had a strong and positive impact on German power spreads. The second major event 

happened in the UK where a carbon price floor was introduced from the beginning of 2013. The carbon 

price floor started at the level of 15.70 GBP/tCO2 and progresses by approximately 2.04 GBP/tCO2 per year 

to reach 30 GBP/tCO2 in 2020 (Sandbag 2013). We hypothesize that the carbon price floor has negatively 

impacted the UK’s power spreads, especially the more carbon intensive clean dark spread.  

Our key modelling principles are parsimony and adequacy. By the first principle, we keep the number of 

coefficients in check instead of over-parametrizing the models. This is a fundamental principle in the Box-

Jenkins approach. By the second principle, we verify that the main model assumptions and statistical 

properties of the price process are adequate. Next, we present the modelling details. 

 

3.3 Data and model 

We begin by formally defining how the power spreads are calculated. As mentioned in the introduction, 

clean dark and clean spark spreads represent cross-commodity derivatives consisting of fuel prices, 

electricity prices and carbon allowance prices. To calculate the future power spreads, we use daily closing 

prices of the front (prompt) month energy commodity futures contracts (electricity, gas, coal), which refer 

to contracts traded in the current month with a delivery in the next month. Futures power spreads represent 

a hedgeable payoff per unit of production from a dispatchable power plant, which is expressed in Eq. 2. 

𝐶𝑙. 𝑆𝑝𝑟𝑒𝑎𝑑 (𝑇)𝑡 =  (𝐸𝐿𝐸𝐶𝑇𝑅𝐼𝐶𝐼𝑇𝑌(𝑇)𝑡 − ( 𝐹𝑈𝐸𝐿(𝑇)𝑡 ∗ 𝐸𝑅)) − 𝐶𝑂2 (𝑇)𝑡 (2) 
Cl. Spread (T)t  in Eq. (2) is the daily futures clean dark CDS (T)t  or clean spark spread CSS (T)t  in 

EUR/MWhel with delivery in month T traded at day t; 𝐸𝐿𝐸𝐶𝑇𝑅𝐼𝐶𝐼𝑇𝑌(𝑇)𝑡 is the daily futures electricity 

price (EUR/MWh) for baseload (clean dark spread) and peak load (clean spark spread) with delivery in 

month T; FUEL(T)t is a daily closing monthly futures price (EUR/MWh) for natural gas (ICE UK Natural 

Gas for clean spark spread) or coal price (ICE Rotterdam Coal Future for clean dark spread) with delivery 

in month T; ER is an efficiency rate, which is the factor of how much gas (coal) is needed to produce 1 

MWh of power, i.e. this considers the fuels’ heating values and the efficiencies of coal and gas power plants, 

here assumed 36% and 50%, respectively; and CO2(T)t is the daily closing futures price of a front-month 

(T) EUA (ICE ECX EUA Future) carbon allowance (EUR/tCO2) traded at time t. For the UK power spreads, 

the UK’s carbon price floor is used from 2013 onwards as the CO2 price, since the EUA price has stayed 

well below the carbon price floor, see      
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Figure  in Appendix. Carbon emission intensity factor is assumed 0.41 tCO2/MWhel for clean spark spread 

and 0.95 tCO2/MWhel for clean dark spread. All data originates from Thomson Reuters Eikon database, 

except the German and Nordic monthly power futures data which originate from EEX and Nasdaq OMX, 

respectively. The time period covered is from the year 2009 to 2016, both included.   
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Figure  and  
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Figure  present the daily German, UK and Nordic clean dark (CDS) and clean spark spreads (CSS)  

 

Because power produced from gas is typically used in times of high demand, we use the electricity peak 

futures in the pricing formula for clean spark spreads. Similarly, power produced from coal is, to date, 

considered baseload and that is why we use the electricity baseload futures in the pricing formula for clean 

dark spreads. Baseload hours are defined as 00am-12pm Mon-Sun, peak load hours are defined as 8am-

8pm Mon- Fri, and off-peak hours are 8pm-8am Mon-Sun in all the studied markets. 

 

To reach a common unit of EUR/MWhel for all spreads, we did the following unit conversions. The gas 

futures were quoted in British pence/1000 therms and were converted to EUR/MWhel (dividing the Euro 

converted price of natural gas by 2.93071 (1 therm = 29.3071 kilowatt hours). Coal futures were quoted in 

USD/tonne and were converted to EUR/MWhel. Currency conversion from GBP and USD to EUR was 

done by using daily exchange rates from the European Central Bank, similarly as (Boersen and Scholtens 

2014, Alberola, Chevallier and Chèze 2008). The choice for using National Balancing Point (NBP) gas 

futures (ICE UK Natural Gas) is that NBP is a benchmark for natural gas trading in Britain and continental 

Europe (Martinéz and Torró 2015). For the same reason, ICE Rotterdam Coal futures are used because they 

are settled against the API 2 index benchmark for coal imported into Norwest Europe. While the coal and 

gas prices differ between the three countries in terms of their absolute levels, the differences will be largely 

constant since they are largely driven by (rather constant) transport costs. The underlying market dynamics, 

however, are largely the same. 

ICE ECX EUA is one of the main platforms auctioning EUA allowances since the first trading period of 

the EU ETS in 2005; hence the corresponding contract prices are considered representative. The UK’s 

yearly carbon price floor was converted from GBP/tCO2 into EUR/tCO2 by using yearly median EUR/GBP 

conversion rate for each year. 

Table 2 further presents detailed descriptive statistics for the power spreads during the studied period 2009-

2016. It must be first noted that futures contracts are traded only during the business (trading) days, which 

excludes weekends and bank holidays, which further vary across the different exchanges and markets. Our 

sample size of this eight-year long sample for each of the markets is approximately 2000 observations 

(approximately 21 trading days/month). The sample size slightly varies across the market/spread 

combinations, because in some cases, the power spreads could not be calculated if one or more of the 

commodity future prices weren’t available. The Nordic CSS is an exception with a sample size of 1624 due 

to the missing access to the Nordic power peak futures contracts that we possess only until 27th May 2015.  

The mean spread (Pt) is significantly higher for CDS than CSS, mainly due to the higher gas fuel prices. 

The changing fuel price dynamics, see      
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Figure  in Appendix, are observable on the power spread levels, especially on the convergence between 

German CDS and CSS from 2014 to 2016. In general, the highest mean (median) CDS and CSS spreads 

are in the UK and the lowest in the Nordics, with Germany scoring in between. CSS spreads are more 

volatile (standard deviation) than CDS spreads while both exhibiting positive skewness.  

Log transformation is a typical approach to limit and stabilize price volatility in electricity price modelling 

studies (Möst and Keles 2010). In the presence of negative spreads, we apply a common method (Sewalt 

and De Jong 2003, Knittel and Roberts 2005) and add a small constant log(x + constant), where min(x + 

constant) is equal to 0.1. To preserve the sign of the spread, the log of the constant is further subtracted, 

making the full transformation equal to log(x + constant) – log (constant). Transforming the daily power 

spreads by natural logarithm (lnPt) shows the stabilization and normalization effects on the distribution, as 

shown by reduced values of standard deviation, skewness, and kurtosis. 

 

The visual inspection of the power spreads in   
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Figure  and  
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Figure  implies that the time series may not be stationary, which is further confirmed by the traditional 

unit-root tests (KPSS, ADF, and DFGLS). Using nonstationary time series for estimation would lead to 

spurious regression, hence we calculate daily spread changes (Pt-Pt-1), and daily log spread returns (lnPt-

lnPt-1). Log-returns are widely used in energy research (Boersen and Scholtens 2014, Pilipovic 2007, 

Mansanet-Bataller, Pardo and Valor 2007) because they promote stationarity and represent continuously 

compounded price changes. Also, when both the left hand side and the right hand side variables in a 

regression equation are in logs, the coefficients are interpreted as elasticities. We will use this property in 

our model described in detail further below. 

 

The daily log returns (lnPt-lnPt-1) in Table 2 exhibit mostly positive skewness, which implies long right 

tails possibly caused by positive outliers, and excessive kurtosis, which often exceed value 3, a benchmark 

for normal distribution in financial econometrics.  High kurtosis values imply that more frequent extreme 

(positive and negative) returns can be expected (fat-tails). All of the mean and median log returns are close 

to zero or slightly negative, which implies the negative tendency of power spread returns. The standard 

deviation of log returns also points out to high volatility, which is the highest for UK CDS (0.083), which 

translates into 132% annualized volatility50.Next, we test whether the daily log returns contain a time 

dependent volatility using the ARCH Lagrange multiplier (LM) test. Residuals from a simple regression of 

log return spreads on a constant are tested for the presence of autoregressive conditional heteroscedasticity 

(ARCH) and in all cases the null hypothesis of no volatility clustering is rejected. Hence ARCH-type 

models are appropriate to this modelling problem. As outlined above, the distribution of log returns is fat-

tailed, as implied by large kurtosis values, which may be better described by a t-distribution than a Gaussian 

distribution. In the model selection process, we compared normal and t-distribution alternatives with the 

latter leading to a better goodness of fit (AIC, BIC, LL). The thickness of the tails of the error distribution 

is confirmed by the degrees of freedom (values of around 2) under the t-distribution assumption, which are 

far from the value 30 which would imply normal distribution. Specifically, we have tested one symmetric 

GARCH(1,1) and two asymmetric SAARCH(1,1), and TGARCH(1,1) ARCH-type models with normal 

and t-distributions.  

 

Our baseline model is the symmetric GARCH(1,1) model, which is frequently used for volatility forecasting 

and in the derivatives literature (Hull 2012). The first asymmetric GARCH is simple asymmetry ARCH 

(SAARCH(1,1)) first proposed by Engle (1990). The asymmetric term γ accounts for the leverage effect of 

volatility. In SAARCH model, the sign of γ is expected to be negative, implying the greater impact of 

negative news on volatility than positive news. The asymmetric term γ in the threshold GARCH 

(TGARCH(1,1)), first introduced by (Zakoian 1994), is expected to be negative, because this coefficient 

loads only the absolute positive innovations, which should have a smaller (negative) impact on variance 

rather than the negative news. TGARCH(1,1) with t-distribution has systematically outperformed other 

specifications and is selected as the best-fitting model for further estimation. In Table 3 we present the 

model selection summary for the German CDS exemplarily, however, the results are systematically similar 

for the other country-spread combinations. 

After defining the log returns and identifying the best fitting model (TGARCH with t-distribution), we 

jointly estimate the mean and variance equations for log power spread returns by the method of conditional 

maximum likelihood. The mean equation is expressed in Eq.3 and the conditional variance in Eq. 4.  

∆𝑅(𝑇)𝑡 =  𝑐 +  ∆𝛽1𝑆𝑜𝑙𝑎𝑟𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑇) +  ∆𝛽2𝑊𝑖𝑛𝑑𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑇)
+  ∆𝛽3𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒𝐹𝑢𝑒𝑙(𝑡) +  ∆𝛽4𝑃𝑜𝑤𝑒𝑟𝑃𝑟𝑖𝑐𝑒𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦(𝑡)
+ ∆𝛽5𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙𝐵𝑟𝑒𝑎𝑘𝑠(𝑡) + ∆𝛽6𝑆𝑒𝑎𝑠𝑜𝑛𝑠(𝑡) + 𝜖 𝑡 

(3) 

𝜎𝑡 = 𝛼0 + 𝛼𝑖|𝜀𝑡−1| +  𝛾𝑖|𝜀𝑡−1|𝐼(𝜀𝑡−1 > 0) + 𝛽7𝜎𝑡−1  (4) 

                                                           
50 This is calculated by multiplying the square root of 252 (the number of trading days in a year) by the standard 

deviation.  
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In Eq.3, 𝑅(𝑇)𝑡 refers to the daily log return of the power spread for the delivery in month T traded during 

time t; Solar and Wind production refers to the expected generation of the respective technology in the next 

month T at time t; SubstituteFuel stands for the daily futures price of the substitute fuel, which is coal (ICE 

Rotterdam Coal Future) for the clean spark spread equation and gas (ICE UK Natural Gas) for the clean 

dark spread equation; PowerPriceVolatility stands for a five-day rolling volatility of electricity futures 

prices, defined as coefficient of variation of front-month electricity peak load price for the clean spark 

spread and front-month electricity baseload price for the clean dark spread; StructuralBreaks are two 

dummy variables referring to the German nuclear moratorium (15March2011) and the introduction of the 

carbon price floor in the UK (since year 2013); Seasons stands for spring (March-May), summer (June-

August) and fall (September-November) seasonal dummies of the trading time t, where winter (December-

February) is the reference season. Exactly in the same manner as the dependent variables (power spreads), 

all the independent variables are transformed by the natural logarithm and first differenced, which maintains 

the property of coefficients representing elasticities.  

In Eq.4, 𝜎𝑡  denotes conditional variance, 𝛼𝑖  accounts for the symmetric impact of innovations (lagged 

squared errors) irrespective of their sign, and 𝛾𝑖 accounts for the leverage effect by loading only positive 

innovations (I(.) is an indicator function, equalling 1 when true, otherwise 0). As discussed above, the 

coefficient 𝛾𝑖  is expected to be negative because positive news typically have a smaller impact on the 

variance than negative news; finally 𝛽𝑗 is a coefficient of the lagged conditional variance addressing the 

heteroscedasticity effect. 

In sum, we have first defined power spreads and investigated their statistical properties, such as skewness, 

kurtosis and volatility. Then, we identified volatility clustering and selected a best fitting model (TGARCH 

with t-distribution). Finally, we have proposed a statistical model that in its mean equation accounts for the 

supply and demand effects in power spreads, and in its variance equation for the volatility clustering. Next, 

we present the estimation results. 

4 Results 

In this section, we present and discuss the estimation results for the mean and variance models of German, 

Nordic, and UK clean dark (CDS) and clean spark (CSS) spreads from the period 2009 to 2016. Table 4 

summarizes the results for clean dark spreads and Table 5 for clean spark spreads. We begin with the results 

in the mean equation, move to the results in the variance equation, and end the section with the model fit 

and performance summary. As a reminder, both the left hand side and the right hand side variables are log-

differenced, representing a log-log regression model where the coefficients in the mean equation represent 

marginal effects (elasticities). 

The expected wind production only seems to have a significant, negative effect on the German CSS (at 1% 

significance level). It also has a negative effect on the German CDS, but at a 20% significance level only. 

The interpretation is that 1% increase in monthly wind production reduces the German CSS by 0.42% and 

the German CDS by 0.22%. To put this into an installed capacity perspective, the monthly average wind 

production in Germany was approximately 6000GWh/month in 2016. To produce an extra 60GWh/month 

(1%) approximately 410MW of additional installed wind capacity would be needed51. To put the values 

into Euro perspective52 , holding everything else constant, additional 1GW of installed wind capacity 

reduces the German CSS by 0.051 EUR/MWhel and the German CDS by 0.032 EUR/MWhel. The values 

may seem rather small, however, considering that there were 22 GW of new installed wind capacity added 

                                                           
51 Here we assume average 20% wind capacity factor, 13% PV capacity factor, and average of 730 hours/month. 
52 Here we use the mean daily clean spark and clean dark spread values over 2009-2016, see 

 

Table  and Table 2. 



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

214 

 

in Germany during our sample period (2009-2016), the total negative effect for the German CSS is 1.122 

EUR/MWhel        (-22.3%) and 0.704 EUR/MWhel (-11.8%) for the German CDS. 

The effect of expected PV production on CSS and CDS is more systematic, with negative and highly 

significant coefficients across the three markets. The coefficients of the PV generation, however, are much 

smaller than those for wind, implying a smaller negative impact. PV has the strongest negative effect on 

the German CSS (0.24%) and CDS (0.17%) followed by the impacts on the Nordic CSS (0.046%) and CDS 

(0.037%), and the UK’s CSS (0.024%). Again, to put this into installed capacity perspective, the monthly 

average PV production was approximately 3800 GWh in Germany, 1000 GWh in the UK, and 72 GWh in 

the Nordics in 2016. To increase the monthly generation values by 1%, approximately 400 MW in 

Germany, 105 MW in the UK, and 8 MW in the Nordics would be needed8. In Euro values9 and holding 

everything else constant, an additional 1 GW of PV capacity would reduce the German CSS by 0.030 

EUR/MWhel, the German CDS by 0.026 EUR/MWhel, the Nordic CSS by 0.889 EUR/MWhel, the Nordic 

CDS by 0.105 EUR/MWhel, and the UK’s CSS by 0.008 EUR/MWhel. Again, the values may seem rather 

small, however, considering that there were around 32 GW of new installed PV capacity added in Germany 

during our sample period (2009-2016), the total negative effect for the German CSS is 0.962 EUR/MWhel 

(-19.1%) and 0.815 EUR/MWhel (-13.6%) for the German CDS. Similarly, approximately 11 GW of new 

solar PV capacity was built in the UK during the studied period. Effectively, the new PV capacity is 

associated with a 0.088 EUR/MWhel drop in the UK’s CSS, which is approximately 2.6% of the UK’s 

average CSS during the studied period. For the Nordic market, the mentioned 1GW increase in solar PV 

capacity would mean more than doubling its total capacity, because only approximately 900 MW of solar 

PV capacity was added during 2009-2016. Hence, the total effect of solar PV on the Nordic CSS has been 

0.800 EUR/MWhel (-5.5%) and on the Nordic CDS 0.094 EUR/MWhel (-4.4%) over the studied period 

2009-2016. 

The effect of the substitute fuel, i.e. gas in the CDS and coal in the CSS, is found to be significant only for 

the CDS, especially in the UK. The estimated elasticities of the CDS for the substitute fuel (gas) are 1.69% 

for UK, 0.16% for Germany, and 0.05% for the Nordics. In Euro perspective, 1% increase in gas price 

would increase the UK CDS by 0.186 EUR/MWhel, the German CDS by 0.011 EUR/MWhel and the Nordic 

CDS by 0.001 EUR/MWhel. Given the domination of flexible hydro-generation in the Nordic power system, 

we would not expect a very strong effect of changes in gas price on the Nordic power spreads. However, 

Germany’s and the UK’s power systems are much more reliant on gas generation, which explains the 

stronger effects.  

The volatility of power futures contracts has small but significant positive effects on the CDS in Germany 

and the UK. The increased volatility in baseload power futures contracts used in the CDS seems to allow 

market participants to capture a small positive risk premium. This premium may represent a compensation 

for coal power generators facing the increased uncertainty around the futures power price. 

The two structural events studied in this work, namely the UK carbon price floor and the nuclear 

moratorium in Germany, both significantly affected the clean dark and clean spark spreads in the affected 

markets. Specifically, the carbon price floor had a more negative effect on the UK CDS than the CSS, which 

is to be expected given the greater carbon intensity of coal. Also, the German nuclear moratorium that led 

to a large and sudden drop in generation capacity has had a positive and significant impact on the German 

CSS and more so on the German CDS. The sudden drop in German capacity was largely substituted by coal 

generators, who have, temporarily, seen an increase in their hedgeable profits. Since these events represent 

binary variables that are not log-transformed, we can take the exponential of their coefficient to find out the 

exact percentage difference between the pre- and post-event. Holding everything else fixed, we can say that 

after the introduction of the UK carbon price floor in 2013, we would expect a 55% drop in UK’s CDS and 

a 38% drop in UK’s CSS, as compared to the pre-carbon price floor period. Similarly, after the German 

nuclear moratorium and holding everything else fixed, we would expect a 56% increase in the German CDS 

and a 36% increase in the German CSS in comparison to the pre-moratorium period. 
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Our final results from the mean equation refer to the seasonality (spring, summer, fall), which is 

referenced to the winter season. We have found significant and negative seasonality especially in the 

German power spreads. Using the same exponentiation as described above to find the percentage impact 

of seasons on power spreads, we find that in the non-winter seasons, the mean German CDS and CSS are 

approximately 16% and 20% lower, respectively. We also find a significantly negative effect of summer 

(7%) and fall (7%) on the Nordic CDS and a significantly negative effect of fall (9%) on the Nordic CSS, 

holding everything else constant.  

In the variance equation, we find significant leverage effects in the CDS and CSS volatility, specifically 

for the CDS in the UK and Germany, and the CSS in the Nordics and Germany. This means that positive 

news have a lower impact on the volatility of the mentioned power spreads than negative news. Also, the 

sum of ARCH and GARCH terms is close to unity, indicating that the volatility is also highly persistent.  

 

4.1 Model fit and performance 

Next, we present a summary of the model fit and performance. After each model was estimated, we have 

tested for the presence of autocorrelation in the standardized residuals with portmanteau Q test, which was 

rejected at 10% level of significance in all models. The test is applied to evaluate whether the residuals are 

free of systematic variation and are normally distributed. Additionally, the ARCH Lagrange multiplier test 

was applied on the standardized residuals to check for the presence of heteroscedasticity, which was again 

rejected for various lags.  

As a visual summary of the model fit, we present multiple diagnostics of standardized residuals, namely 

their distribution against time, histogram, autocorrelation and partial-autocorrelation functions, as displayed 

in   
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Figure . We present these diagnostics for the German CDS model only; however, the results for the 

remaining models are very similar.  

 The efficient market hypothesis postulates that returns follow a martingale process and thus cannot be 

predicted. Within our model specification, we can explicitly forecast the volatility of power spread returns, 

and thus measure the model’s performance. We do this by in-sample one-step ahead (one trading day ahead) 

volatility forecast and reporting four different loss functions (Degiannakis and Floros 2016). Specifically, 

these functions are root mean square error (RMSE), mean-absolute error (MAE), mean heteroscedasticity 

adjusted absolute error (HMAE), and mean heteroscedasticity adjusted squared error (HMSE), as defined 

in Eq. (5-8). 
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where 𝜎𝑡
2 is the actual volatility and �̂�𝑡

2 is the predicted volatility at day t. The in-sample prediction provides 

only the historical performance of the model, which is sufficient given the main purpose of the paper 

focusing on the determinants of power spreads. The out-of-sample hedging effectiveness and out-of-sample 

forecasting of the power spreads volatility are natural extensions, as shown earlier on crack spreads (Wang 

and Wu 2012). Table 6 summarizes the forecast evaluation statistics showing good in-sample performance 

and fit. 

 

5 Discussion 

In this section, we come back to the key motivations of this work and attempt to shed more light on these 

based on the results summarized above. In this work, we focused on the energy policy trilemma, which is 

environmental sustainability, reliability of supply, and economic competitiveness. The promotion of vRES 

is associated with environmental sustainability, while the question of adequate hedging mechanisms for 

dispatchable and flexible generation is associated with both reliability of supply and economic 

competitiveness. To jointly study these policies, we have focused on the risk management reality of 

dispatchable flexibility providers (coal and gas power generators) and the fundamental factors impacting 

the risk management, proxied by hedgeable power spreads. Below, we first deepen the discussion around 

some of the main results and then follow with broader implications that span beyond the country-specific 

drivers of hedgeable profit margins. 

First, the finding of negative effects of vRES on hedgeable power spreads concurs with studies on spot 

markets. This suggests that the risk management of flexible conventional generation becomes more 

challenging with the growth in vRES. The statistical significance (insignificance) of the vRES effects on 

some hedgeable power spreads can be mostly explained by the structure of a power generation fleet in a 

given country. Germany has seen the largest increase in solar PV and wind capacity, where especially the 

latter substituted the conventional generation (coal, lignite, nuclear and natural gas) in the daily operation. 

The stronger negative effect of wind generation on the CSS rather than the CDS can be explained by the 



Asia-Pacific Applied Economics Association Conference Proceedings 

The 3rd Applied Financial Modelling Conference, Kampar, Malaysia, 2017 

217 

 

structure of the merit order curve: gas generation is typically dispatched after coal. The close-to-zero 

marginal variable costs of vRES push gas off the merit order curve first, making the negative effect stronger 

for the CSS than for the CDS. In the UK, the share of coal-fired power generation in the overall electricity 

supply has been steadily declining and the major drop in the UK’s CDS seems to be explained by the carbon 

price floor rather than by vRES. The UK’s CSS is negatively impacted by solar PV generation mostly 

because the day-time peak demand typically coincides with peak solar PV generation which pushes the 

peaking gas generators off the merit order curve. With respect to the Nordic market, it may seem surprising 

that the limited solar PV generation has significantly negative impacts on both the CDS and the CSS. 

Despite the fact that the Nordic electricity market is a hydro-dominated system with natural access to 

flexibility, there are national differences which may be confounding some of the estimated effects. 

Disaggregation of the individual Nordic countries, which would need to take into consideration futures 

zonal prices of the individual countries53, could reveal more nuanced relationships between hedgeable 

power spreads and vRES. Perhaps more interesting for the Nordic market, a study of hedgeable peak/off-

peak spreads could reveal the hedging dynamics of hydro-generating power plants which also function as 

energy storage. 

Second, we find a systematic effect of gas, as a substitute fuel, on the clean dark spread. Depending on the 

power generating fleet in a given market, we typically expect a stronger impact of the substitute fuel on the 

CDS than the CSS. This is because in the past, coal was typically a cheaper fuel than gas, which means that 

coal-fired power plants (depending on their efficiency) would be dispatched before gas-fired power plants. 

Consequently, when gas-fired power plants are needed to cover the demand, they set the power price and 

gas prices would therefore drive the clean dark spread. On the contrary, increasing coal prices would not 

drive the clean spark spread to the same extent. These dynamics, though, may be also changing in the future. 

For example, Ofgem (2016) highlights a wholesale market situation in May 2016 when CCGTs pushed all 

coal off merit order curve for four hours. Increasing coal prices, increasing efficiencies of gas-fired power 

plants, and higher carbon prices are just some factors behind the changing dynamics between CDS and 

CSS. 

Third, the large negative impact of the UK’s carbon price floor on power spreads reveals the following 

issues. First, the increased cost of carbon was not fully passed through to the power prices, so the externality 

was paid for by the polluters rather than end-users. This may be explained by increasing electricity imports 

into the UK following the introduction of the carbon price floor since the floor was introduced in the UK 

only. This shows that, as opposed to a continent-wide or global policy on carbon, a single-country policy 

may lead to carbon leakage. In the case of EU and the UK, the UK’s carbon emitting power generators 

faced approximately four times higher costs for carbon than their European counterparts. Inside the single 

electricity market with cross-border transmission connections, the more expensive generators are easily 

substituted by less expensive imports, irrespective of their carbon intensity. 

Now, we may move towards broader implications of the results. First, many countries currently have an 

overcapacity in their power systems so the negative or low power spreads are sending “correct” market 

signals to not invest into new flexible generation. However, the exit of large-scale nuclear power plants and 

decommissioning of old dispatchable units puts pressure on the transmission system operators (TSO) to run 

the system reliably already in the short-term.54 The design of efficient, market-based solutions to promote 

adequate risk management of existing assets or, if needed, investments into new flexible capacity is 

therefore an important challenge. 

                                                           
53  This would involve combining the Nordic baseload and peak load power futures with electricity area price 

differential (EPAD) contracts. 
54 For instance, the German TSO’s have been calling for new flexible gas power plants to run the transmission 

system reliably (Frankfurter Allgemeine Zeitung 2017). 
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Second, given the acclaimed role of natural gas as a transition fuel, it is interesting to see that vRES seems 

to have a stronger negative impact on the CSS than on the CDS. With the shut-down of coal-fired power 

plants in the medium term and continuous adoption of vRES, gas-fired power plants may find economic 

challenges, particularly when relying on energy-only markets exclusively. New markets rewarding 

capacity, reliability or flexibility may be needed to enable flexibility providers to stay in or enter the market.  

Third, the effects of vRES on hedgeable power spreads may change with the change in subsidy-based 

economics of vRES. Moving towards a subsidy-free vRES market, wholesale power prices may start to 

reflect scarcity and under the assumption of sufficiently high price caps, power prices may again start 

sending investment signals into flexible generation and storage, if these are needed. The change in vRES 

subsidies would relatively quickly translate into the wholesale electricity prices, underlying the relevance 

of an energy-only market. The current prolonged downward pressure on electricity prices has led to the 

introduction of regulatory-driven solutions, such as the capacity markets / payment mechanisms. Depending 

on the length and further development of vRES economics, and the development of commodity and CO2 

prices all jointly impacting the power prices, capacity markets may be justified. However, in addition to the 

security of supply as the core purpose of capacity markets, the regulatory and cost burden should be also 

accounted for when justifying their existence. 

 

6 Conclusions 

This work has studied the impacts of power market fundamentals on risk management of technologies that 

provide flexibility and dispatchability to the power system. By explicitly studying the relationships between 

fundamentals and hedgeable power spreads, we have revealed important dynamics. Namely, the growth in 

variable renewable energy generation and capacity reduces the possibility of coal and especially gas power 

plants to manage risk ahead of actual operation. This finding is especially relevant for markets that do not 

have abundance of flexible renewable generation, such as the hydro-based Nordic power market. 

Methodologically, we have attempted to bridge a gap between the spot and futures pricing models and 

empirically quantify the impacts of fundamentals on the futures market. 

The time period analysed here captured the transition period in which traditional business models and risk 

management strategies designed for the centralized power system are ceasing to work. This effect is 

manifested by the increasing challenge to secure profit margins by traditional hedging methods. Great 

emphasis has been put on the environmental sustainability as one policy of the energy trilemma. However, 

without addressing the remaining two energy policies of the energy trilemma, issues such as lack of 

investment in flexible and dispatchable generation, and high electricity prices may become more 

pronounced in the near future. New hedging strategies and hedging products, portfolios of integrated energy 

technologies, and the possibility to participate in multiple markets may aid smoothing the transition. 
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Figure 1 German, UK and Nordic daily clean dark spreads (CDS), 2009-2016 
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Figure 2 German, UK and Nordic daily clean spark spreads (CSS), 2009-2016 
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Figure 3 Diagnostics for German clean dark spreads (CDS) with TGARCH model specified 

in Eq.(3-4): (a) Daily standardized residuals against time. (b) Autocorrelation function of 

standardized residuals against lag in days. (c) Histogram with normal and kernel 

distribution of standardized residuals. (d) Partial autocorrelation function of standardized 

residuals against lag in days. 
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Figure 4 Electricity consumption and installed vRES capacity in Germany, UK and Nordic 
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Figure 5 Fuel, EU ETS and UK carbon price floor prices 
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Table 1 Fundamental drivers of power spreads and studies applying them in electricity futures and 

spot markets 

Driver Definition Futures market Spot market 

Expected 

solar and 

wind 

generation 

Expected next-month PV and wind productions 

are calculated as the product of the national 

long-run PV and wind capacity factors, 

installed capacity of solar and wind, and the 

number of hours in a month.  

(Kristiansen 2017) (C.-K. Woo, et al. 

2012, Woo, 

Horowitz and 

Pacheco 2011) 

Price of fuel 

(substitute) 

Price of gas when studying clean dark spreads 

(CDS) and price of coal when studying clean 

spark spread (CSS), in EUR/unit of fuel. 

(Carmona and 

Coulon 2014, 

Carmona, Coulon 

and Schwarz 2012, 

Boersen and 

Scholtens 2014) 

(Mansanet-

Bataller, Pardo 

and Valor 2007, 

C.-K. Woo, et al. 

2012) 

Volatility of 

electricity 

futures price 

Five-day rolling volatility of electricity futures 

prices, defined as coefficient of variation 

(standard deviation/mean) of front-month 

electricity peak load price when studying clean 

spark spreads and front-month electricity 

baseload price when studying clean dark 

spread. 

(Fanelli, Maddalena 

and Musti 2016) 

(Karakatsani and 

Bunn 2008) 

Seasonality Season-of the year effect on the mean of power 

spreads, measured as dummies for spring 

(March-May), summer (June-August), fall 

(September-November), and winter 

(December-February), with reference to winter 

as the coldest and typically the most volatile 

season.  

(Cartea and 

Villaplana 2008) 

(Karakatsani and 

Bunn 2008) 

Structural 

breaks 

We consider two country-specific events 

captured by dummy variables. The first event is 

the introduction of carbon price floor in the UK 

in 2013. The second event is the announcement 

of the so-called nuclear moratorium by the 

German government, which stated a 

temporary* shut down of 8 out of 17 German 

nuclear reactors. 

(Arouri, et al. 2012) (Alberola, 

Chevallier and 

Chèze 2008) 

Note: *The temporary shut-down resulted to permanent shut down announced August 6th 2011. The 

affected reactors were Biblis A (1167MWe) and B (1240MWe), Brunsbüttel (771MWe), Isar 1 (878 

MWe), Krümmel (1346 MWe), Neckarwestheim 1 (785 MWe), Philippsburg 1 (890 MWe) and 

Unterweser (1345 MWe), a total of 8422 MWe (IAEA 2011). 
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Table 2 Summary statistics for German, Nordic, and UK daily power spreads, 2009-2016 

 Variable N mean med min max sd skew kurt 

C
le

an
 d

ar
k

 s
p

re
ad

 (
C

D
S

) 

G
er

m
an

y
 

Pt 2010 5.983 5.158 -2.090 24.044 4.394 0.991 3.789 

Pt-Pt-1 2010 -0.008 -0.026 -5.821 8.575 0.922 1.333 19.254 

lnPt 2010 0.353 0.333 -0.175 1.045 0.218 0.467 2.746 

lnPt-lnPt-1 2010 0.000 -0.001 -0.310 0.447 0.049 1.106 18.076 

N
o

rd
ic

 Pt 1989 2.130 1.756 -20.276 49.613 7.972 0.834 6.947 

Pt-Pt-1 1989 -0.005 0.013 -17.868 10.627 1.379 -1.222 32.651 

lnPt 1989 0.034 0.043 -0.709 0.808 0.190 -0.322 4.766 

lnPt-lnPt-1 1989 0.000 0.000 -0.232 0.353 0.031 1.257 25.237 

U
K

 

Pt 2036 11.012 10.303 -4.890 36.920 6.833 0.514 3.055 

Pt-Pt-1 2036 -0.007 -0.034 -11.304 8.297 1.155 -0.391 21.584 

lnPt 2036 1.056 1.120 -3.910 2.128 0.516 -1.720 11.835 

lnPt-lnPt-1 2036 0.000 -0.002 -0.584 0.594 0.083 0.499 14.423 

C
le

an
 s

p
ar

k
 s

p
re

ad
 (

C
S

S
) 

G
er

m
an

y
 

Pt 1998 -5.026 -6.971 -33.069 42.428 13.712 0.360 2.486 

Pt-Pt-1 1998 -0.010 -0.026 -10.448 14.571 1.491 0.444 16.350 

lnPt 1998 -0.314 -0.236 -5.804 0.824 0.607 -1.379 8.435 

lnPt-lnPt-1 1998 0.000 -0.001 -0.523 0.532 0.070 0.343 14.876 

N
o
rd

ic
 Pt 1624 -14.652 -19.419 -43.440 52.991 17.795 0.534 2.371 

Pt-Pt-1 1624 -0.012 -0.013 -19.620 12.680 1.920 -0.937 20.553 

lnPt 1624 -0.553 -0.540 -2.715 0.760 0.618 -0.323 2.348 

lnPt-lnPt-1 1624 -0.002 0.000 -0.506 0.487 0.077 -0.447 10.588 

U
K

 

Pt 2021 3.423 1.122 -18.372 92.018 11.938 3.227 19.295 

Pt-Pt-1 2021 0.001 -0.014 -19.797 15.255 1.662 -0.280 36.959 

lnPt 2021 0.063 0.059 -5.219 1.789 0.458 -0.489 12.699 

lnPt-lnPt-1 2021 0.000 -0.001 -0.593 0.521 0.066 0.135 21.092 

Note: This table shows descriptive statistics for the daily spread (Pt), daily log spread (lnPt), daily 

spread change (Pt-Pt-1), and daily log returns (lnPt-lnPt-1) of power spreads - clean dark spread 

(CDS) and clean spark spread (CSS). Outliers in the log returns series, defined as log returns 

greater 0.6 (60%), were substituted by the nearby past log return. The following numbers of log 

returns were affected: 12 UK CDS, 3 Nordic CSS, 3 UK CSS, 6 DE CSS. 
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Table 3 Model selection, example of German CDS daily log returns 

 GARC

H 

GARCH(

t) 

SAARC

H 

SAARCH(

t) 

TGARC

H 

TGARCH(

t) 

Constant -0.001 -0.001* -0.001 -0.001** 

-

0.003**

* 

-0.001** 

  (-0.53) (-1.93) (-1.32) (-2.17) (-5.16) (-2.27) 

ARCH(-1) 0.392** 0.026** 0.383** 0.027*** 0.344** 0.106*** 

 (2.24) (2.46) (2.25) (2.94) (2.57) (4.64) 

GARCH(-1) 0.127 0.962*** 0.094 0.957*** 0.381* 0.939*** 

 (1.02) (66.94) (1.04) (77.97) (1.90) (73.15) 

Leverage effect γ - - -0.007 -0.003** -0.078 -0.068*** 

 - - (-1.04) (-2.42) (-0.43) (-2.68) 

Constant 
0.001**

* 
0.000 

0.002**

* 
0.000** 0.021** 0.001** 

  (4.75) (1.52) (5.54) (2.11) (2.34) (2.57) 

Log degrees of freedom (t-

dist.) 

- -0.680** - -0.713*** - -0.670** 

- (-2.50) - (-2.65) - (-2.47) 

Akaike Information 

Criterion 

-

6572.14 -7517.15 -6576.45 -7525.11 -6613.97 -7570.87 

Bayesian Information 

Criterion 

-

6549.72 -7489.13 -6548.43 -7491.48 -6585.94 -7537.24 

Log likelihood 
3290.07

1 3763.576 

3293.22

7 3768.555 

3311.98

5 3791.437 

Degrees of freedom  2.506  2.490  2.512 

N 2009 2009 2009 2009 2009 2009 

Note: Significance levels are *p< 0.10, **p< 0.05, *** p<0.01; Z-statistics based on Bollerslev-

Woodridge robust standard errors in parentheses; The table displays model selection with 

different volatility specifications (GARCH(1,1), SAARCH(1,1), and TGARCH(1,1)) and 

distribution assumptions (t-distribution, indicated by symbol (t)). The best fitting model that 

captures the time dependence structure of the series is selected based on the information criteria 

and log likelihood statistics. 
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Table 4 Estimation results of TGARCH model for German, Nordic, and UK clean dark 

spreads (CDS), 2009-2016 

 DE CDS NORD CDS UK CDS 

Mean equation 

Expected Wind Production (GWh/month) -0.2145 0.0067 0.056 
 (-1.21) (0.08) (1.18) 

Expected Solar Production (GWh/month) -0.1704*** -0.0373*** 0.0179 
 (-3.63) (-5.22) (1.27) 

Gas price (EUR/MWh) 0.1621*** 0.0446* 1.6911*** 
 (6.51) (1.66) (28.42) 

Base power futures price volatility 0.0036** -0.0013 0.0039** 

 (2.25) (-0.84) (2.46) 

German nuclear moratorium(15March2011) 0.4460*** - - 

 (67.85) - - 

UK Carbon floor (y2013) - - -0.4386*** 

 - - (-29.25) 

Spring -0.1624*** -0.0033 0.0063 

 (-3.03) (-0.21) (0.31) 

Summer -0.1193** -0.0645*** -0.0185 

 (-2.17) (-3.72) (-1.20) 

Fall -0.1518*** -0.0635*** -0.007 

 (-3.77) (-9.83) (-0.63) 

Constant -0.0008 -0.0002 0.0002 

 (-1.34) (-0.29) (0.30) 

Variance equation 

ARCH(-1) 0.0907*** 0.1103*** 0.3934*** 

 (4.88) (5.70) (5.76) 

ARCH(-2) - - -0.2880*** 

 - - (-4.29) 

Leverage effect γ -0.0859*** 0.0103 -0.0786*** 

 (-3.83) (0.44) (-3.29) 

GARCH(-1) 0.9563*** 0.8950*** 0.9588*** 

 (68.91) (55.14) (129.14) 

Constant 0.0008** 0.0007*** 0.0002* 

 (1.98) (3.30) (1.83) 

Akaike Information Criterion -7671.0118 -9271.1837 -7025.506 

Bayesian Information Criterion -7592.6834 -9198.5882 -6935.78 

Log likelihood 3849.5059 4648.5918 3528.753 

Degrees of freedom 2.6994 3.6766 2.6185 

Durbin-Watson statistic   2.0477 1.9646 2.1411 

N 1988 1967 2014 

Time interval 5Jan2009-28Nov2016 

Note: Significance levels are *p< 0.10, **p< 0.05, *** p<0.01; Z-statistics based on 

Bollerslev-Woodridge robust standard errors in parentheses; the table shows estimation 

results of TGARCH(1,1) model (DE & NORD CDS) and TGARCH(2,1) model (UK 

CDS) with t-distribution on daily log returns. All the explanatory variables are also log-

differenced, therefore the coefficients of this log-log regression model represent 

marginal effects (elasticities).  
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Table 5 Estimation results of TGARCH model for German, Nordic, and UK clean spark spreads 

(CSS), 2009-2016 

 DE CSS NORD CSS UK CSS 

Mean equation 

Expected Wind Production (GWh/month) -0.4185*** 0.0936 0.0221 
 (-11.44) (0.91) (0.72) 

Expected Solar Production (GWh/month) -0.2395*** -0.0460** -0.0236** 
 (-23.42) (-2.26) (-2.53) 

Coal price (EUR/MWh) -0.3013 -0.2126 0.0428 
 (.) (-1.17) (0.74) 

Peak power futures price volatility 0.0017 -0.0051 -0.0029 

 (1.07) (-1.28) (-1.36) 

German nuclear moratorium(15March2011) 0.3101*** - - 

 (49.06) - - 

UK Carbon floor  (y2013) - - -0.3193*** 

 - - (-20.10) 

Spring -0.2103*** -0.023 0.0157** 

 (-312.07) (-0.74) (2.06) 

Summer -0.1565*** -0.0369 0.0107 

 (-13.95) (-0.90) (0.92) 

Fall -0.1805*** -0.0835*** -0.0182 

 (-11.16) (-2.77) (-1.39) 

Constant -0.0008 -0.0008 -0.0003 

 (-1.26) (-0.65) (-0.37) 

Variance equation 

ARCH(-1) 0.1380*** 0.1946*** 0.4708*** 

 (5.50) (3.85) (5.84) 

ARCH(-2) - - -0.3343*** 

 - - (-4.46) 

Leverage effect γ -0.1163*** -0.0761** -0.0346 

 (-5.22) (-2.44) (-0.94) 

GARCH(-1) 0.9428*** 0.8832*** 0.9271*** 

 (74.88) (24.58) (54.94) 

Constant 0.0006** 0.0011* 0.0010** 

 (2.56) (1.77) (2.39) 

Akaike Information Criterion -6548.9012 -4628.1019 -7013.5527 

Bayesian Information Criterion -6481.8291 -4558.2481 -6929.5392 

Log likelihood 3286.4506 2327.051 3521.7764 

Degrees of freedom 2.8010 3.2198 2.3953 

Durbin-Watson statistic 2.0594 1.4515 1.4550 

N 1977 1593 2000 

Time interval 5Jan2009-30Nov2016* 

Note: Significance levels are *p< 0.10, **p< 0.05, *** p<0.01; Z-statistics based on Bollerslev-

Woodridge robust standard errors in parentheses; the table shows estimation results of TGARCH(1,1) 

model (DE & NORD CSS) and TGARCH(2,1) model (UK CSS) model with t-distribution on daily log 

returns; All the explanatory variables are also log-differenced, therefore the coefficients of this log-log 

regression model represent marginal effects (elasticities). *NORD CSS estimation sample is 5Jan2009-

28Aug2015. 
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Table 6 Comparison of in-sample forecasting performance of volatility models for power spreads 

Loss function DE CDS UK CDS NORD CDS DE CSS UK CSS NORD CSS 

MSE 4.50E-06 0.00075 0.000032 0.00079 0.01356 0.002268 

MAE 0.0031 0.00827 0.001134 0.00614 0.00739 0.007707 

HMSE 22.08326 120.047 12.55427 12.24601 11.0894 11.91409 

HMAE -0.07084 -0.58742 -0.105445 0.02459 0.27927 0.022787 

*Note: RMSE refers to root mean square error, MAE refers to mean absolute error, HMSE 

and HMAE refer to heteroscedasticity adjusted MSE and MAE, respectively, as defined in Eq. 

(5-8). 

 

 

 


